These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 38379761)

  • 1. Comparing data-driven physiological denoising approaches for resting-state fMRI: implications for the study of aging.
    Golestani AM; Chen JJ
    Front Neurosci; 2024; 18():1223230. PubMed ID: 38379761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data.
    Van Schuerbeek P; De Wandel L; Baeken C
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T.
    Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D
    Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
    Parkes L; Fulcher B; Yücel M; Fornito A
    Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denoising task-related fMRI: Balancing noise reduction against signal loss.
    Hoeppli ME; Garenfeld MA; Mortensen CK; Nahman-Averbuch H; King CD; Coghill RC
    Hum Brain Mapp; 2023 Dec; 44(17):5523-5546. PubMed ID: 37753711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks.
    Mascali D; Moraschi M; DiNuzzo M; Tommasin S; Fratini M; Gili T; Wise RG; Mangia S; Macaluso E; Giove F
    Hum Brain Mapp; 2021 Apr; 42(6):1805-1828. PubMed ID: 33528884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of automated ICA-based denoising of fMRI data in acute stroke patients.
    Carone D; Licenik R; Suri S; Griffanti L; Filippini N; Kennedy J
    Neuroimage Clin; 2017; 16():23-31. PubMed ID: 28736698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem.
    Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A
    Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI.
    Steel A; Garcia BD; Silson EH; Robertson CE
    Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Temporal and Spatial Independent Component Analysis in Identifying and Removing Low-Frequency Physiological and Motion Effects in Resting-State fMRI.
    Golestani AM; Chen JJ
    Front Neurosci; 2022; 16():867243. PubMed ID: 35757543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology.
    Cao L; Kohut SJ; Frederick BD
    Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential pitfalls when denoising resting state fMRI data using nuisance regression.
    Bright MG; Tench CR; Murphy K
    Neuroimage; 2017 Jul; 154():159-168. PubMed ID: 28025128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-truth "resting-state" signal provides data-driven estimation and correction for scanner distortion of fMRI time-series dynamics.
    Kumar R; Tan L; Kriegstein A; Lithen A; Polimeni JR; Mujica-Parodi LR; Strey HH
    Neuroimage; 2021 Feb; 227():117584. PubMed ID: 33285328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain.
    Diao Y; Yin T; Gruetter R; Jelescu IO
    Front Neurosci; 2021; 15():602170. PubMed ID: 33841071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
    Kassinopoulos M; Mitsis GD
    Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Frequency Systemic Hemodynamic "Noise" in Resting State BOLD fMRI: Characteristics, Causes, Implications, Mitigation Strategies, and Applications.
    Tong Y; Hocke LM; Frederick BB
    Front Neurosci; 2019; 13():787. PubMed ID: 31474815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity.
    Misaki M; Bodurka J
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34126595
    [No Abstract]   [Full Text] [Related]  

  • 20. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.