These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38379761)

  • 21. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution.
    Hocke LM; Tong Y; Lindsey KP; de B Frederick B
    Magn Reson Med; 2016 Dec; 76(6):1697-1707. PubMed ID: 26854203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.
    Kundu P; Voon V; Balchandani P; Lombardo MV; Poser BA; Bandettini PA
    Neuroimage; 2017 Jul; 154():59-80. PubMed ID: 28363836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
    Hallquist MN; Hwang K; Luna B
    Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sparse Representation-Based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling: A Task fMRI Study.
    Jeong S; Li X; Yang J; Li Q; Tarokh V
    IEEE Access; 2020; 8():36728-36740. PubMed ID: 35528966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of noise regression techniques in resting-state fMRI studies using data of 434 older adults.
    Scheel N; Keller JN; Binder EF; Vidoni ED; Burns JM; Thomas BP; Stowe AM; Hynan LS; Kerwin DR; Vongpatanasin W; Rossetti H; Cullum CM; Zhang R; Zhu DC
    Front Neurosci; 2022; 16():1006056. PubMed ID: 36340768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies.
    Seewoo BJ; Joos AC; Feindel KW
    Neurosci Res; 2021 Apr; 165():26-37. PubMed ID: 32464181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locally Low-Rank Denoising of Multi-Echo Functional MRI Data With Application in Resting-State Analysis.
    Meyer NK; Kang D; Ahmed Z; In MH; Shu Y; Huston J; Bernstein MA; Trzasko JD
    Top Magn Reson Imaging; 2023 Oct; 32(5):37-49. PubMed ID: 37796647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.
    Erdoğan SB; Tong Y; Hocke LM; Lindsey KP; deB Frederick B
    Front Hum Neurosci; 2016; 10():311. PubMed ID: 27445751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional connectivity in the rat at 11.7T: Impact of physiological noise in resting state fMRI.
    Kalthoff D; Seehafer JU; Po C; Wiedermann D; Hoehn M
    Neuroimage; 2011 Feb; 54(4):2828-39. PubMed ID: 20974263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating denoising strategies in resting-state functional magnetic resonance in traumatic brain injury (EpiBioS4Rx).
    Weiler M; Casseb RF; de Campos BM; Crone JS; Lutkenhoff ES; Vespa PM; Monti MM;
    Hum Brain Mapp; 2022 Oct; 43(15):4640-4649. PubMed ID: 35723510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
    Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM
    Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-wide functional connectivity artifactually inflates throughout fMRI scans: a problem and solution.
    Korponay C; Janes AC; Frederick BB
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition.
    Cohen AD; Yang B; Fernandez B; Banerjee S; Wang Y
    Neuroimage; 2021 Jan; 225():117461. PubMed ID: 33069864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 37. Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam.
    Forsyth A; McMillan R; Campbell D; Malpas G; Maxwell E; Sleigh J; Dukart J; Hipp J; Muthukumaraswamy SD
    Hum Brain Mapp; 2020 Apr; 41(6):1472-1494. PubMed ID: 31808268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal Empirical Mode Decomposition of Resting-State fMRI Signals: Application to Global Signal Regression.
    Moradi N; Dousty M; Sotero RC
    Front Neurosci; 2019; 13():736. PubMed ID: 31396032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spin-Echo Resting-State Functional Connectivity in High-Susceptibility Regions: Accuracy, Reliability, and the Impact of Physiological Noise.
    Khatamian YB; Golestani AM; Ragot DM; Chen JJ
    Brain Connect; 2016 May; 6(4):283-97. PubMed ID: 26842962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.