These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38379795)

  • 1. Metabolomic analysis to unravel the composition and dynamic variations of anthocyanins in bayberry-soaked wine during the maceration process.
    Li Y; Chen S; Lyu X; Fang X; Cao X
    Food Chem X; 2024 Mar; 21():101175. PubMed ID: 38379795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion.
    McDougall GJ; Fyffe S; Dobson P; Stewart D
    Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions.
    Liu Y; Zhang XK; Shi Y; Duan CQ; He F
    Food Chem; 2019 Jun; 283():315-323. PubMed ID: 30722877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches.
    Han FL; Li Z; Xu Y
    J Food Sci; 2015 Dec; 80(12):C2751-8. PubMed ID: 26588442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine.
    Zhang Z; Li J; Fan L; Duan Z
    Food Chem; 2020 Apr; 310():125980. PubMed ID: 31838371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terroir Effect on the Phenolic Composition and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal).
    Cosme F; Vilela A; Moreira L; Moura C; Enríquez JAP; Filipe-Ribeiro L; Nunes FM
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33353130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems.
    Zhao X; He F; Zhang XK; Shi Y; Duan CQ
    Food Chem; 2022 May; 375():131670. PubMed ID: 34848083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative metabolomics study of anthocyanins and taste components in Chinese bayberry (
    Lin Q; Zhong Q; Zhang Z
    PeerJ; 2022; 10():e13466. PubMed ID: 35669961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of cyanidin-3-O-glucoside induced by antioxidant compounds in model Chinese bayberry wine: Kinetic studies and mechanisms.
    Zhang Z; Zhang J; Fan L; Kilmartin PA
    Food Chem; 2022 Mar; 373(Pt A):131426. PubMed ID: 34717084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats.
    Ichiyanagi T; Shida Y; Rahman MM; Hatano Y; Konishi T
    J Agric Food Chem; 2006 Sep; 54(18):6578-87. PubMed ID: 16939312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring.
    Zhao X; Ding BW; Qin JW; He F; Duan CQ
    Food Chem; 2020 Oct; 326():126960. PubMed ID: 32413752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of anthocyanin condensation reaction in model wine solution under pulsed light treatment.
    Mohammadi X; Matinfar G; Mandal R; Singh A; Fiutak G; Kitts DD; Pratap Singh A
    Food Chem; 2023 Mar; 405(Pt B):134600. PubMed ID: 36403476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochemical Characterization of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) of 17 Cultivars and Their Antioxidant Properties.
    Zhang X; Huang H; Zhang Q; Fan F; Xu C; Sun C; Li X; Chen K
    Int J Mol Sci; 2015 Jun; 16(6):12467-81. PubMed ID: 26042467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of anthocyanins in the presence of inactivated yeasts and yeast cell walls during simulation of wine aging.
    Baiano A; Petruzzi L; Sinigaglia M; Corbo MR; Bevilacqua A
    J Food Sci Technol; 2018 Aug; 55(8):3335-3339. PubMed ID: 30065445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Anthocyanins and Their Fouling Mechanisms during Non-Thermal Nanofiltration of Blueberry Aqueous Extracts.
    Cai M; Xie C; Zhong H; Tian B; Yang K
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33809170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between modification of phenolic profiling and development of wine color during alcohol fermentation.
    Li SY; Liu PT; Pan QH; Shi Y; Duan CQ
    J Food Sci; 2015 Apr; 80(4):C703-10. PubMed ID: 25807971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico.
    Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E
    J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.
    He B; Zhang LL; Yue XY; Liang J; Jiang J; Gao XL; Yue PX
    Food Chem; 2016 Aug; 204():70-76. PubMed ID: 26988477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malvidin-3- O-glucoside Chemical Behavior in the Wine pH Range.
    Forino M; Gambuti A; Luciano P; Moio L
    J Agric Food Chem; 2019 Jan; 67(4):1222-1229. PubMed ID: 30604613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.