These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38379836)

  • 1. Experimental and Numerical Study of Radioiodine Sorption and Transport in Hanford Sediments.
    He X; Rockhold ML; Fang Y; Lawter AR; Freedman VL; Mackley RD; Qafoku NP
    ACS Earth Space Chem; 2024 Feb; 8(2):323-334. PubMed ID: 38379836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH
    J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.
    Hu Q; Zhao P; Moran JE; Seaman JC
    J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ precipitation of hydrous ferric oxide (HFO) for remediation of subsurface iodine contamination.
    Wang G; Szecsody JE; Avalos NM; Qafoku NP; Freedman VL
    J Contam Hydrol; 2020 Nov; 235():103705. PubMed ID: 32927336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Methylation of Iodide in Unconfined Aquifer Sediments at the Hanford Site, USA.
    Bagwell CE; Zhong L; Wells JR; Mitroshkov AV; Qafoku NP
    Front Microbiol; 2019; 10():2460. PubMed ID: 31708909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.
    Qafoku NP; Zachara JM; Liu C; Gassman PL; Qafoku OS; Smith SC
    Environ Sci Technol; 2005 May; 39(9):3157-65. PubMed ID: 15926566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Sorbents for
    Cordova EA; Garayburu-Caruso V; Pearce CI; Cantrell KJ; Morad JW; Gillispie EC; Riley BJ; Colon FC; Levitskaia TG; Saslow SA; Qafoku O; Resch CT; Rigali MJ; Szecsody JE; Heald SM; Balasubramanian M; Meyers P; Freedman VL
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26113-26126. PubMed ID: 32421326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.
    Li J; Zhou H; Wang Y; Xie X; Qian K
    J Contam Hydrol; 2017 Jun; 201():39-47. PubMed ID: 28495233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linearity and reversibility of iodide adsorption on sediments from Hanford, Washington under water saturated conditions.
    Um W; Serne RJ; Krupka KM
    Water Res; 2004 Apr; 38(8):2009-16. PubMed ID: 15087181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodate and nitrate transformation by Agrobacterium/Rhizobium related strain DVZ35 isolated from contaminated Hanford groundwater.
    Lee BD; Ellis JT; Dodwell A; Eisenhauer EER; Saunders DL; Lee MH
    J Hazard Mater; 2018 May; 350():19-26. PubMed ID: 29448210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments.
    Steefel CI; Carroll S; Zhao P; Roberts S
    J Contam Hydrol; 2003 Dec; 67(1-4):219-46. PubMed ID: 14607478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of physicochemical properties of various soil types on iodide and iodate sorption.
    Duborská E; Urík M; Bujdoš M; Matulová M
    Chemosphere; 2019 Jan; 214():168-175. PubMed ID: 30265923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite.
    Zhang S; Xu C; Creeley D; Ho YF; Li HP; Grandbois R; Schwehr KA; Kaplan DI; Yeager CM; Wellman D; Santschi PH
    Environ Sci Technol; 2013 Sep; 47(17):9635-42. PubMed ID: 23885783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
    Pan Z; Giammar DE; Mehta V; Troyer LD; Catalano JG; Wang Z
    Environ Sci Technol; 2016 Dec; 50(24):13486-13494. PubMed ID: 27993066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications.
    Lawter AR; Garcia WL; Kukkadapu RK; Qafoku O; Bowden ME; Saslow SA; Qafoku NP
    Sci Total Environ; 2018 Sep; 636():588-595. PubMed ID: 29723831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.
    Chen G; Flury M; Harsh JB; Lichtner PC
    Environ Sci Technol; 2005 May; 39(10):3435-42. PubMed ID: 15952347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, U.S.A.
    Liu C; Zachara JM; Qafoku O; Smith SC
    Environ Sci Technol; 2003 Jun; 37(12):2640-5. PubMed ID: 12854700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of Monothioarsenate to the Natural Sediments and Its Competition with Arsenite and Arsenate.
    Shan H; Zhang J; Peng S; Zhan H; Liao D
    Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal capacity and chemical speciation of groundwater iodide (I
    Li D; Kaplan DI; Sams A; Powell BA; Knox AS
    J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.