These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38379930)

  • 1. Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications.
    Roos AK; Scarano E; Arvidsson EK; Holmgren E; Haviland DB
    Beilstein J Nanotechnol; 2024; 15():242-255. PubMed ID: 38379930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
    Bockstiegel C; Wang Y; Vissers MR; Wei LF; Chaudhuri S; Hubmayr J; Gao J
    Appl Phys Lett; 2016 May; 108(22):. PubMed ID: 29332947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable superconducting nanoinductors.
    Annunziata AJ; Santavicca DF; Frunzio L; Catelani G; Rooks MJ; Frydman A; Prober DE
    Nanotechnology; 2010 Nov; 21(44):445202. PubMed ID: 20921595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscope characterization of a resonating nanocantilever.
    Abadal G; Davis ZJ; Borrisé X; Hansen O; Boisen A; Barniol N; Pérez-Murano F; Serra F
    Ultramicroscopy; 2003; 97(1-4):127-33. PubMed ID: 12801665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoresistive sensors for scanning probe microscopy.
    Gotszalk T; Grabiec P; Rangelow IW
    Ultramicroscopy; 2000 Feb; 82(1-4):39-48. PubMed ID: 10741650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level.
    Shin H; Hesketh PJ; Mizaikoff B; Kranz C
    Anal Chem; 2007 Jul; 79(13):4769-77. PubMed ID: 17521168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead-Free LiNbO
    Barrientos G; Clementi G; Trigona C; Ouhabaz M; Gauthier-Manuel L; Belharet D; Margueron S; Bartasyte A; Malandrino G; Baglio S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging.
    Morozov D; Doyle SM; Banerjee A; Brien TLR; Hemakumara D; Thayne IG; Wood K; Hadfield RH
    J Low Temp Phys; 2018; 193(3):196-202. PubMed ID: 30839694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress effect on the resonance properties of single-crystal diamond cantilever resonators for microscopy applications.
    Shen X; Lv Z; Ichikawa K; Sun H; Sang L; Huang Z; Koide Y; Koizumi S; Liao M
    Ultramicroscopy; 2022 Apr; 234():113464. PubMed ID: 35045375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M
    ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy.
    Volk J; Radó J; Baji Z; Erdélyi R
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of coupled eigenmodes in Akiyama atomic force microscopy probes for bimodal multifrequency sensing.
    Kort-Kamp WJM; Murdick RA; Htoon H; Jones AC
    Nanotechnology; 2022 Aug; 33(45):. PubMed ID: 35853401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy.
    Alunda BO; Lee YJ
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latched detection of zeptojoule spin echoes with a kinetic inductance parametric oscillator.
    Vine W; Kringhøj A; Savytskyi M; Parker D; Schenkel T; Johnson BC; McCallum JC; Morello A; Pla JJ
    Sci Adv; 2024 Apr; 10(14):eadm7624. PubMed ID: 38578995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Q Resonator-Inductor Using LiNbO₃ Plate for Frequency Tuning in 1-5 GHz.
    Wu S; Wu Z; Bao F; Zou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2331-2338. PubMed ID: 35503838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.
    Tosolini G; Villanueva LG; Perez-Murano F; Bausells J
    Rev Sci Instrum; 2012 Jan; 83(1):015002. PubMed ID: 22299978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.