BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38380081)

  • 1. KIF26B and CREB3L1 Derived from Immunoscore Could Inhibit the Progression of Ovarian Cancer.
    Cong S; Fu Y; Zhao X; Guo Q; Liang T; Wu D; Wang J; Zhang G
    J Immunol Res; 2024; 2024():4817924. PubMed ID: 38380081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of KIF26B, Cell Migration and Proliferation of Human Ovarian Cancer Cell Lines In Vitro, and Patient Outcomes from Human Bioinformatic Analysis.
    Yang X; Zhang L; Xie L
    Med Sci Monit; 2018 Jun; 24():3863-3872. PubMed ID: 29880787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of two immune subtypes and four hub immune-related genes in ovarian cancer through multiple analysis.
    Tang Q; Zhang H; Tang R
    Medicine (Baltimore); 2023 Oct; 102(40):e35246. PubMed ID: 37800814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of dysregulated miRNAs-genes network in ovarian cancer: An integrative approach to uncover the molecular interactions and oncomechanisms.
    Kadkhoda S; Darbeheshti F; Tavakkoly-Bazzaz J
    Cancer Rep (Hoboken); 2020 Dec; 3(6):e1286. PubMed ID: 32886452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis identifying epithelial-derived transcriptomes predicts poor clinical outcome and immune infiltrations in ovarian cancer.
    Li DF; Tulahong A; Uddin MN; Zhao H; Zhang H
    Math Biosci Eng; 2021 Jul; 18(5):6527-6551. PubMed ID: 34517544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylostratigraphic analysis of gene co-expression network reveals the evolution of functional modules for ovarian cancer.
    Zhang L; Tan Y; Fan S; Zhang X; Zhang Z
    Sci Rep; 2019 Feb; 9(1):2623. PubMed ID: 30796309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone Methyltransferase KMT2D Regulates H3K4 Methylation and is Involved in the Pathogenesis of Ovarian Cancer.
    Li M; Shi M; Xu Y; Qiu J; Lv Q
    Cell Transplant; 2021; 30():9636897211027521. PubMed ID: 34705580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ELFN1-AS1 accelerates cell proliferation, invasion and migration via regulating miR-497-3p/CLDN4 axis in ovarian cancer.
    Jie Y; Ye L; Chen H; Yu X; Cai L; He W; Fu Y
    Bioengineered; 2020 Dec; 11(1):872-882. PubMed ID: 32779991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UBE2S promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling pathway to regulate cell cycle and apoptosis.
    Zhang M; Liu Y; Yin Y; Sun Z; Wang Y; Zhang Z; Li F; Chen X
    Mol Med; 2022 Jun; 28(1):62. PubMed ID: 35658829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of Hub Genes for Ovarian Cancer Stem Cell Properties with Weighted Gene Co-expression Network Analysis].
    Luo M; Zeng H; Ma XY; Ma XL
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):248-258. PubMed ID: 33829699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response.
    Lian X; Liu B; Wang C; Wang S; Zhuang Y; Li X
    Front Endocrinol (Lausanne); 2023; 14():1182776. PubMed ID: 37342266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an Immunity and Ferroptosis-Related Risk Score Model to Predict Ovarian Cancer Clinical Outcomes and Immune Microenvironment.
    Wei C; Zhao G; Gao M; Liu Y; Lei P; Cao T
    Front Biosci (Landmark Ed); 2023 Jan; 28(1):4. PubMed ID: 36722270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a ceRNA network of hub genes affecting immune infiltration in ovarian cancer identified by WGCNA.
    Su R; Jin C; Zhou L; Cao Y; Kuang M; Li L; Xiang J
    BMC Cancer; 2021 Aug; 21(1):970. PubMed ID: 34461858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMEM119 facilitates ovarian cancer cell proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling pathway.
    Sun T; Bi F; Liu Z; Yang Q
    J Transl Med; 2021 Mar; 19(1):111. PubMed ID: 33731124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer.
    Yan S; Fang J; Chen Y; Xie Y; Zhang S; Zhu X; Fang F
    BMC Cancer; 2020 Dec; 20(1):1205. PubMed ID: 33287740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four genes relevant to pathological grade and prognosis in ovarian cancer.
    Pan X; Chen Y; Gao S
    Cancer Biomark; 2020; 29(2):169-178. PubMed ID: 32444534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis.
    Wu M; Sun Y; Wu J; Liu G
    Med Sci Monit; 2020 Mar; 26():e922107. PubMed ID: 32180586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ELK1-induced up-regulation of KIF26B promotes cell cycle progression in breast cancer.
    Wang S; Zhang H; Liu H; Guo X; Ma R; Zhu W; Gao P
    Med Oncol; 2021 Nov; 39(1):15. PubMed ID: 34817735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression modules construction by WGCNA and identify potential hub genes and regulation pathways of postpartum depression.
    Deng Z; Cai W; Liu J; Deng A; Yang Y; Tu J; Yuan C; Xiao H; Gao W
    Front Biosci (Landmark Ed); 2021 Nov; 26(11):1019-1030. PubMed ID: 34856750
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.