These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38380242)

  • 1. Predicting band gaps of ABN
    Ghosh S; Chowdhury J
    RSC Adv; 2024 Feb; 14(9):6385-6397. PubMed ID: 38380242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating the Discovery of Hybrid Perovskites with Targeted Band Gaps via Interpretable Machine Learning.
    Yang C; Chong X; Hu M; Yu W; He J; Zhang Y; Feng J; Zhou Y; Wang LW
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40419-40427. PubMed ID: 37594363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of shear strain on the electronic and optical properties of Al-doped stanane.
    Zhao J; Liu G; Wei L; Jiao G; Chen Y; Zhang G
    J Mol Model; 2023 Dec; 30(1):2. PubMed ID: 38060064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the Band Gaps of Inorganic Solids by Machine Learning.
    Zhuo Y; Mansouri Tehrani A; Brgoch J
    J Phys Chem Lett; 2018 Apr; 9(7):1668-1673. PubMed ID: 29532658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation.
    Xu P; Lu T; Ju L; Tian L; Li M; Lu W
    J Phys Chem B; 2021 Jan; 125(2):601-611. PubMed ID: 33411516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring electronic and optical properties of Ge-based perovskites under strain: Insights from the first-principles calculations.
    Sa R; Zha W; Yuan R; Chen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():118013. PubMed ID: 31923790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band Gap Alteration of Halide Mixing in Hybrid Perovskites: A First-Principles Study with Statistical Analysis.
    Shahzadi U; Yang D; Fatima K; Wang F
    J Phys Chem A; 2024 Feb; 128(6):1173-1180. PubMed ID: 38321941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Aided Band Gap Engineering of BaZrS
    Sharma S; Ward ZD; Bhimani K; Sharma M; Quinton J; Rhone TD; Shi SF; Terrones H; Koratkar N
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18962-18972. PubMed ID: 37014669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering novel halide perovskite alloys using multi-fidelity machine learning and genetic algorithm.
    Yang J; Manganaris P; Mannodi-Kanakkithodi A
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38349626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic Halide Double Perovskites with Optoelectronic Properties Modulated by Sublattice Mixing.
    Bartel CJ; Clary JM; Sutton C; Vigil-Fowler D; Goldsmith BR; Holder AM; Musgrave CB
    J Am Chem Soc; 2020 Mar; 142(11):5135-5145. PubMed ID: 32088953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Organic-Inorganic Hybrid Perovskite Band Gap by Multiple Machine Learning Algorithms.
    Feng S; Wang J
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of the performance of a variety of first-principles schemes for accurate prediction of binary semiconductor band gaps.
    Abedi S; Tarighi Ahmadpour M; Baninajarian S; Kahnouji H; Hashemifar SJ; Han ZK; Levchenko SV
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.
    Jain D; Chaube S; Khullar P; Goverapet Srinivasan S; Rai B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19423-19436. PubMed ID: 31460545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning for Halide Perovskite Materials ABX
    Alhashmi A; Kanoun MB; Goumri-Said S
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, electronic and optical properties of lead free Rb based triiodide for photovoltaic application: an
    Nyayban A; Panda S; Chowdhury A
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34192668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A band-gap database for semiconducting inorganic materials calculated with hybrid functional.
    Kim S; Lee M; Hong C; Yoon Y; An H; Lee D; Jeong W; Yoo D; Kang Y; Youn Y; Han S
    Sci Data; 2020 Nov; 7(1):387. PubMed ID: 33177500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites.
    Wang Z; Han Y; Lin X; Cai J; Wu S; Li J
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):717-725. PubMed ID: 34967594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Trends in the Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study.
    Zhang T; Cai Z; Chen S
    ACS Appl Mater Interfaces; 2020 May; 12(18):20680-20690. PubMed ID: 32281362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting HSE band gaps from PBE charge densities via neural network functionals.
    Lentz LC; Kolpak AM
    J Phys Condens Matter; 2020 Apr; 32(15):155901. PubMed ID: 31805538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.