These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38380333)

  • 1. sscNOVA: a semi-supervised convolutional neural network for predicting functional regulatory variants in autoimmune diseases.
    Li H; Yu Z; Du F; Song L; Gao Y; Shi F
    Front Immunol; 2024; 15():1323072. PubMed ID: 38380333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data.
    Ren Z; Li Q; Cao K; Li MM; Zhou Y; Wang K
    BMC Bioinformatics; 2023 Feb; 24(1):43. PubMed ID: 36759776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences.
    Mourad R
    BMC Bioinformatics; 2023 May; 24(1):186. PubMed ID: 37147561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs.
    He Z; Liu L; Wang K; Ionita-Laza I
    Nat Commun; 2018 Dec; 9(1):5199. PubMed ID: 30518757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes.
    Pourreza Shahri M; Kahanda I
    BMC Bioinformatics; 2021 Oct; 22(1):500. PubMed ID: 34656098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural network model to predict causal risk factors that share complex regulatory features.
    Lee T; Sung MK; Lee S; Yang W; Oh J; Kim JY; Hwang S; Ban HJ; Choi JK
    Nucleic Acids Res; 2019 Dec; 47(22):e146. PubMed ID: 31598692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants.
    Lu H; Ma L; Quan C; Li L; Lu Y; Zhou G; Zhang C
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):385-395. PubMed ID: 34973416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interpretable semi-supervised framework for patch-based classification of breast cancer.
    Shawi RE; Kilanava K; Sakr S
    Sci Rep; 2022 Oct; 12(1):16734. PubMed ID: 36202832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning.
    Lai B; Qian S; Zhang H; Zhang S; Kozlova A; Duan J; Xu J; He X
    PLoS Comput Biol; 2022 May; 18(5):e1010011. PubMed ID: 35576194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders.
    Zhou J; Chen Q; Braun PR; Perzel Mandell KA; Jaffe AE; Tan HY; Hyde TM; Kleinman JE; Potash JB; Shinozaki G; Weinberger DR; Han S
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2206069119. PubMed ID: 35969790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification.
    Hao Wu ; Prasad S
    IEEE Trans Image Process; 2018 Mar; 27(3):1259-1270. PubMed ID: 29990156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying noncoding risk variants using disease-relevant gene regulatory networks.
    Gao L; Uzun Y; Gao P; He B; Ma X; Wang J; Han S; Tan K
    Nat Commun; 2018 Feb; 9(1):702. PubMed ID: 29453388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSVM: Transfer Support Vector Machine for Predicting MPRA Validated Regulatory Variants.
    Li M; Zhou S; Liu T; Liu C; Zang M; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):472-479. PubMed ID: 38451770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.