These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38380745)

  • 1. Local-environment-guided selection of atomic structures for the development of machine-learning potentials.
    Li R; Zhou C; Singh A; Pei Y; Henkelman G; Li L
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38380745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning potential construction based on radial distribution function sampling.
    Watanabe N; Hori Y; Sugisawa H; Ida T; Shoji M; Shigeta Y
    J Comput Chem; 2024 Sep; ():. PubMed ID: 39225311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations.
    Willow SY; Kim DG; Sundheep R; Hajibabaei A; Kim KS; Myung CW
    Phys Chem Chem Phys; 2024 Aug; 26(33):22073-22082. PubMed ID: 39113586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An MLP-based feature subset selection for HIV-1 protease cleavage site analysis.
    Kim G; Kim Y; Lim H; Kim H
    Artif Intell Med; 2010; 48(2-3):83-9. PubMed ID: 19945261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability evaluation of the deep potential model for simulating water-graphene confined system.
    Liu D; Wu J; Lu D
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials.
    Chen MS; Morawietz T; Mori H; Markland TE; Artrith N
    J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
    Hajibabaei A; Umer M; Anand R; Ha M; Kim KS
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating Fourth-Generation Machine Learning Potentials Using Quasi-Linear Scaling Particle Mesh Charge Equilibration.
    Gubler M; Finkler JA; Schäfer MR; Behler J; Goedecker S
    J Chem Theory Comput; 2024 Aug; 20(16):7264-71. PubMed ID: 39151921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset.
    Bacanin N; Venkatachalam K; Bezdan T; Zivkovic M; Abouhawwash M
    Microprocess Microsyst; 2023 Apr; 98():104778. PubMed ID: 36785847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Structures of Ex-Solved Nanoparticles Identified by Machine-Learned Potentials.
    Kang S; Kim JK; Kim H; Son YH; Chang J; Kim J; Kim DW; Lee JM; Kwon HJ
    Nano Lett; 2024 Apr; 24(14):4224-4232. PubMed ID: 38557115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm.
    Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H
    Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifelong Machine Learning Potentials.
    Eckhoff M; Reiher M
    J Chem Theory Comput; 2023 Jun; 19(12):3509-3525. PubMed ID: 37288932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.