These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38380781)

  • 1. Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels.
    Koch JS; Romero-Romero S; Höcker B
    Protein Sci; 2024 Mar; 33(3):e4926. PubMed ID: 38380781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach.
    Romero-Romero S; Costas M; Silva Manzano DA; Kordes S; Rojas-Ortega E; Tapia C; Guerra Y; Shanmugaratnam S; Rodríguez-Romero A; Baker D; Höcker B; Fernández-Velasco DA
    J Mol Biol; 2021 Sep; 433(18):167153. PubMed ID: 34271011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels.
    Kordes S; Romero-Romero S; Lutz L; Höcker B
    Protein Sci; 2022 Feb; 31(2):513-527. PubMed ID: 34865275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy.
    Huang PS; Feldmeier K; Parmeggiani F; Velasco DAF; Höcker B; Baker D
    Nat Chem Biol; 2016 Jan; 12(1):29-34. PubMed ID: 26595462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design.
    Chu AE; Fernandez D; Liu J; Eguchi RR; Huang PS
    Biodes Res; 2022; 2022():9842315. PubMed ID: 37850141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of a de novo TIM barrel with a rationally designed secondary structure element.
    Wiese JG; Shanmugaratnam S; Höcker B
    Protein Sci; 2021 May; 30(5):982-989. PubMed ID: 33723882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of symmetric TIM barrel proteins from first principles.
    Nagarajan D; Deka G; Rao M
    BMC Biochem; 2015 Aug; 16():18. PubMed ID: 26264284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases.
    Sharma P; Kaila P; Guptasarma P
    FEBS J; 2016 Dec; 283(23):4340-4356. PubMed ID: 27749025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation.
    Gromiha MM; Pujadas G; Magyar C; Selvaraj S; Simon I
    Proteins; 2004 May; 55(2):316-29. PubMed ID: 15048825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold.
    Ochoa-Leyva A; Montero-Morán G; Saab-Rincón G; Brieba LG; Soberón X
    PLoS One; 2013; 8(8):e70582. PubMed ID: 23950966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold.
    Kadumuri RV; Vadrevu R
    Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the fold organization of TIM barrel from interaction energy based structure networks.
    Vijayabaskar MS; Vishveshwara S
    PLoS Comput Biol; 2012; 8(5):e1002505. PubMed ID: 22615547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo design of small beta barrel proteins.
    Kim DE; Jensen DR; Feldman D; Tischer D; Saleem A; Chow CM; Li X; Carter L; Milles L; Nguyen H; Kang A; Bera AK; Peterson FC; Volkman BF; Ovchinnikov S; Baker D
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2207974120. PubMed ID: 36897987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed loops of TIM barrel protein fold.
    Frenkel ZM; Trifonov EN
    J Biomol Struct Dyn; 2005 Jun; 22(6):643-56. PubMed ID: 15842170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HHrep: de novo protein repeat detection and the origin of TIM barrels.
    Söding J; Remmert M; Biegert A
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W137-42. PubMed ID: 16844977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs.
    Dellus-Gur E; Toth-Petroczy A; Elias M; Tawfik DS
    J Mol Biol; 2013 Jul; 425(14):2609-21. PubMed ID: 23542341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.