These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38380859)

  • 1. Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication.
    Stock TJZ; Warschkow O; Constantinou PC; Bowler DR; Schofield SR; Curson NJ
    Adv Mater; 2024 Jun; 36(24):e2312282. PubMed ID: 38380859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Patterning of Arsenic in Silicon by Scanning Tunneling Microscopy.
    Stock TJZ; Warschkow O; Constantinou PC; Li J; Fearn S; Crane E; Hofmann EVS; Kölker A; McKenzie DR; Schofield SR; Curson NJ
    ACS Nano; 2020 Mar; 14(3):3316-3327. PubMed ID: 32142256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface.
    Hofmann EVS; Stock TJZ; Warschkow O; Conybeare R; Curson NJ; Schofield SR
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202213982. PubMed ID: 36484458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-atom transistor.
    Fuechsle M; Miwa JA; Mahapatra S; Ryu H; Lee S; Warschkow O; Hollenberg LC; Klimeck G; Simmons MY
    Nat Nanotechnol; 2012 Feb; 7(4):242-6. PubMed ID: 22343383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.
    Prati E; Hori M; Guagliardo F; Ferrari G; Shinada T
    Nat Nanotechnol; 2012 Jul; 7(7):443-7. PubMed ID: 22751223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Electron-Beam Manipulation of Single-Dopant Atoms in Silicon.
    Markevich A; Hudak BM; Madsen J; Song J; Snijders PC; Lupini AR; Susi T
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(29):16041-16048. PubMed ID: 34354792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Atom-by-Atom Assembly of Dopants in Silicon.
    Hudak BM; Song J; Sims H; Troparevsky MC; Humble TS; Pantelides ST; Snijders PC; Lupini AR
    ACS Nano; 2018 Jun; 12(6):5873-5879. PubMed ID: 29750507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically Precise Manufacturing of Silicon Electronics.
    Pitters J; Croshaw J; Achal R; Livadaru L; Ng S; Lupoiu R; Chutora T; Huff T; Walus K; Wolkow RA
    ACS Nano; 2024 Mar; 18(9):6766-6816. PubMed ID: 38376086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Quantum Materials Simulated with Artificial Model Lattices.
    Freeney SE; Slot MR; Gardenier TS; Swart I; Vanmaekelbergh D
    ACS Nanosci Au; 2022 Jun; 2(3):198-224. PubMed ID: 35726276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum engineering at the silicon surface using dangling bonds.
    Schofield SR; Studer P; Hirjibehedin CF; Curson NJ; Aeppli G; Bowler DR
    Nat Commun; 2013; 4():1649. PubMed ID: 23552064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-electron tunneling through an individual arsenic dopant in silicon.
    Shorokhov VV; Presnov DE; Amitonov SV; Pashkin YA; Krupenin VA
    Nanoscale; 2017 Jan; 9(2):613-620. PubMed ID: 27942691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive imaging of atomically thin nanostructures buried in silicon.
    Gramse G; Kölker A; Lim T; Stock TJZ; Solanki H; Schofield SR; Brinciotti E; Aeppli G; Kienberger F; Curson NJ
    Sci Adv; 2017 Jun; 3(6):e1602586. PubMed ID: 28782006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT.
    Wyrick J; Wang X; Namboodiri P; Kashid RV; Fei F; Fox J; Silver R
    ACS Nano; 2022 Nov; 16(11):19114-19123. PubMed ID: 36317737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon.
    Koelling S; Richard O; Bender H; Uematsu M; Schulze A; Zschaetzsch G; Gilbert M; Vandervorst W
    Nano Lett; 2013 Jun; 13(6):2458-62. PubMed ID: 23675857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atom-by-Atom Construction of a Cyclic Artificial Molecule in Silicon.
    Wyrick J; Wang X; Namboodiri P; Schmucker SW; Kashid RV; Silver RM
    Nano Lett; 2018 Dec; 18(12):7502-7508. PubMed ID: 30428677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valley interference and spin exchange at the atomic scale in silicon.
    Voisin B; Bocquel J; Tankasala A; Usman M; Salfi J; Rahman R; Simmons MY; Hollenberg LCL; Rogge S
    Nat Commun; 2020 Nov; 11(1):6124. PubMed ID: 33257680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers.
    Wang X; Hagmann JA; Namboodiri P; Wyrick J; Li K; Murray RE; Myers A; Misenkosen F; Stewart MD; Richter CA; Silver RM
    Nanoscale; 2018 Mar; 10(9):4488-4499. PubMed ID: 29459919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon.
    Walsh MA; Hersam MC
    Annu Rev Phys Chem; 2009; 60():193-216. PubMed ID: 18976139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating individual arsenic dopant atoms in silicon using low-temperature scanning tunnelling microscopy.
    Sinthiptharakoon K; Schofield SR; Studer P; Brázdová V; Hirjibehedin CF; Bowler DR; Curson NJ
    J Phys Condens Matter; 2014 Jan; 26(1):012001. PubMed ID: 24304933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.