These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38380862)

  • 1. Cascade Bowl Multicavity Structure for
    Lv E; Wang T; Wang J; Sun R; Zhang C; Yu J; Li Z; Man B; Zhao X; Zhang C
    J Phys Chem Lett; 2024 Feb; 15(8):2247-2254. PubMed ID: 38380862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate.
    Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance.
    Zheng C; Yu J; Dou L; Wang Z; Huang Z; Li X; Hu X; Li Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29609-29617. PubMed ID: 37285222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hydrophilic-hydrophobic graphitic carbon nitride@silver hybrid substrate for recyclable surface-enhanced Raman scattering-based detection without the coffee-ring effect.
    Jiang Y; Sun H; Gu C; Zhang Y; Jiang T
    Analyst; 2021 Sep; 146(19):5923-5933. PubMed ID: 34570851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO
    Zhou W; Yin BC; Ye BC
    Biosens Bioelectron; 2017 Jan; 87():187-194. PubMed ID: 27551999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates.
    Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z
    Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues.
    Li X; Li L; Wang Y; Hao X; Wang C; Yang Z; Li H
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122877. PubMed ID: 37209479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments.
    Li R; Gui B; Mao H; Yang Y; Chen D; Xiong J
    ACS Sens; 2020 Nov; 5(11):3420-3431. PubMed ID: 32929960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions.
    Ren W; Zhu C; Wang E
    Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction.
    Wang D; Bao L; Li H; Guo X; Liu W; Wang X; Hou X; He B
    Nanoscale; 2022 Apr; 14(16):6212-6219. PubMed ID: 35403650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules.
    Sun G; Fu C; Dong M; Jin G; Song Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120743. PubMed ID: 34942414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired surface-enhanced Raman scattering substrate with intrinsic Raman signal for the interactive SERS detection of pesticides residues.
    Sun H; Li X; Gu C; Zhang J; Wei G; Jiang T; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120800. PubMed ID: 34974296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Ag Hybrids on Laser-Textured Si Surface for SERS Detection.
    Zhang C; Lin K; Huang Y; Zhang J
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag Nanoparticles@Agar Gel as a 3D Flexible and Stable SERS Substrate with Ultrahigh Sensitivity.
    Chang R; Wang T; Liu Q; Tang J; Wu D
    Langmuir; 2022 Nov; 38(45):13822-13832. PubMed ID: 36326574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration.
    Dai P; Xue Y; Wang X; Weng Q; Zhang C; Jiang X; Tang D; Wang X; Kawamoto N; Ide Y; Mitome M; Golberg D; Bando Y
    Nanoscale; 2015 Dec; 7(45):18992-7. PubMed ID: 26511400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.