BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38381566)

  • 1. One-Component Nanocomposites Made from Diblock Copolymer Grafted Cellulose Nanocrystals.
    Rader C; Fritz PW; Ashirov T; Coskun A; Weder C
    Biomacromolecules; 2024 Mar; 25(3):1637-1648. PubMed ID: 38381566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology.
    Zhang J; Zhang X; Li MC; Dong J; Lee S; Cheng HN; Lei T; Wu Q
    Int J Biol Macromol; 2019 Jun; 130():685-694. PubMed ID: 30826401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites.
    Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P
    Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Cellulose Nanocrystals into the Core of Polymer Latex Particles via Polymer Grafting.
    Kedzior SA; Kiriakou M; Niinivaara E; Dubé MA; Fraschini C; Berry RM; Cranston ED
    ACS Macro Lett; 2018 Aug; 7(8):990-996. PubMed ID: 35650951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing into the nucleation and reinforcing effects of poly (vinyl acetate) grafted cellulose nanocrystals in melt-processed poly (lactic acid) nanocomposites.
    Wu H; Liu Y; Wu H; Yuan Y; Zhang J
    Int J Biol Macromol; 2023 Mar; 231():123421. PubMed ID: 36731697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of nanocellulose via atom transfer radical polymerization and its reinforcing effect in waterborne UV-curable resin.
    Wang Q; Yang Z; Feng X; Liu X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126743. PubMed ID: 37689290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Nanocomposites with Cellulose Nanocrystals Featuring Adaptive Surface Groups.
    Natterodt JC; Sapkota J; Foster EJ; Weder C
    Biomacromolecules; 2017 Feb; 18(2):517-525. PubMed ID: 28068070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.
    Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness-Changing of Polymer Nanocomposites with Cellulose Nanocrystals and Polymeric Dispersant.
    Meesorn W; Zoppe JO; Weder C
    Macromol Rapid Commun; 2019 May; 40(9):e1800910. PubMed ID: 30786085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer.
    Engkagul V; Rader C; Pon N; Rowan SJ; Weder C
    Biomacromolecules; 2021 Dec; 22(12):5087-5096. PubMed ID: 34734702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.
    Yu J; Wang C; Wang J; Chu F
    Carbohydr Polym; 2016 May; 141():143-50. PubMed ID: 26877006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate.
    Yin Y; Tian X; Jiang X; Wang H; Gao W
    Carbohydr Polym; 2016 May; 142():206-12. PubMed ID: 26917392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making Nanocomposites of Hydrophilic and Hydrophobic Polymers Using Gas-Responsive Cellulose Nanocrystals.
    Farnia F; Fan W; Dory Y; Zhao Y
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900114. PubMed ID: 30968513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals
    Kiriakou MV; Berry RM; Hoare T; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals.
    de Mesquita JP; Donnici CL; Teixeira IF; Pereira FV
    Carbohydr Polym; 2012 Sep; 90(1):210-7. PubMed ID: 24751032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of Polymer-Grafted Cellulose Nanocrystals into Latex-Based Pressure-Sensitive Adhesives.
    Kiriakou MV; Pakdel AS; Berry RM; Hoare T; Dubé MA; Cranston ED
    ACS Mater Au; 2022 Mar; 2(2):176-189. PubMed ID: 36855757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls.
    Flauzino Neto WP; Mariano M; da Silva ISV; Silvério HA; Putaux JL; Otaguro H; Pasquini D; Dufresne A
    Carbohydr Polym; 2016 Nov; 153():143-152. PubMed ID: 27561481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
    Camarero Espinosa S; Kuhnt T; Foster EJ; Weder C
    Biomacromolecules; 2013 Apr; 14(4):1223-30. PubMed ID: 23458473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film.
    Zheng T; Clemons CM; Pilla S
    Carbohydr Polym; 2021 Nov; 271():118405. PubMed ID: 34364549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization.
    Babaei-Ghazvini A; Vafakish B; Patel R; Falua KJ; Dunlop MJ; Acharya B
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128834. PubMed ID: 38128804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.