BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38381607)

  • 1. SRRM2 phase separation drives assembly of nuclear speckle subcompartments.
    Zhang M; Gu Z; Guo S; Sun Y; Ma S; Yang S; Guo J; Fang C; Shu L; Ge Y; Chen Z; Wang B
    Cell Rep; 2024 Mar; 43(3):113827. PubMed ID: 38381607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SON and SRRM2 are essential for nuclear speckle formation.
    Ilik İA; Malszycki M; Lübke AK; Schade C; Meierhofer D; Aktaş T
    Elife; 2020 Oct; 9():. PubMed ID: 33095160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRRM2 organizes splicing condensates to regulate alternative splicing.
    Xu S; Lai SK; Sim DY; Ang WSL; Li HY; Roca X
    Nucleic Acids Res; 2022 Aug; 50(15):8599-8614. PubMed ID: 35929045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathological tau drives ectopic nuclear speckle scaffold protein SRRM2 accumulation in neuron cytoplasm in Alzheimer's disease.
    McMillan PJ; Strovas TJ; Baum M; Mitchell BK; Eck RJ; Hendricks N; Wheeler JM; Latimer CS; Keene CD; Kraemer BC
    Acta Neuropathol Commun; 2021 Jun; 9(1):117. PubMed ID: 34187600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of nuclear speckles reduces chromatin interactions in active compartments.
    Hu S; Lv P; Yan Z; Wen B
    Epigenetics Chromatin; 2019 Jul; 12(1):43. PubMed ID: 31315647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of structural changes in nuclear speckle.
    Wakao S; Saitoh N; Awazu A
    Biophys Physicobiol; 2023; 20(2):e200020. PubMed ID: 38496241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-liquid phase separation: Galectin-3 in nuclear speckles and ribonucleoprotein complexes.
    Voss PG; Wang JL
    Exp Cell Res; 2023 Jun; 427(1):113571. PubMed ID: 37003559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing RCOR2 as a regulatory component of nuclear speckles.
    Rivera C; Verbel-Vergara D; Arancibia D; Lappala A; González M; Guzmán F; Merello G; Lee JT; Andrés ME
    Epigenetics Chromatin; 2021 Nov; 14(1):51. PubMed ID: 34819154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear speckles: dynamic hubs of gene expression regulation.
    Ilık İA; Aktaş T
    FEBS J; 2022 Nov; 289(22):7234-7245. PubMed ID: 34245118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Speckle-related Protein 70 Binds to Serine/Arginine-rich Splicing Factors 1 and 2 via an Arginine/Serine-like Region and Counteracts Their Alternative Splicing Activity.
    Kim CH; Kim YD; Choi EK; Kim HR; Na BR; Im SH; Jun CD
    J Biol Chem; 2016 Mar; 291(12):6169-81. PubMed ID: 26797131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing of long noncoding RNA SRRM2-AS exerts suppressive effects on angiogenesis in nasopharyngeal carcinoma via activating MYLK-mediated cGMP-PKG signaling pathway.
    Chen S; Lv L; Zhan Z; Wang X; You Z; Luo X; You H
    J Cell Physiol; 2020 Nov; 235(11):7757-7768. PubMed ID: 31742692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear speckle integrity and function require TAO2 kinase.
    Gao S; Esparza M; Dehghan I; Aksenova V; Zhang K; Batten K; Ferretti MB; Begg BE; Cagatay T; Shay JW; García-Sastre A; Goldsmith EJ; Chen ZJ; Dasso M; Lynch KW; Cobb MH; Fontoura BMA
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2206046119. PubMed ID: 35704758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2.
    Cui H; Diedrich JK; Wu DC; Lim JJ; Nottingham RM; Moresco JJ; Yates JR; Blencowe BJ; Lambowitz AM; Schimmel P
    Nat Cell Biol; 2023 Apr; 25(4):592-603. PubMed ID: 37059883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SRRM2 splicing factor modulates cell fate in early development.
    Carvalho S; Zea-Redondo L; Tang TCC; Stachel-Braum P; Miller D; Caldas P; Kukalev A; Diecke S; Grosswendt S; Grosso AR; Pombo A
    Biol Open; 2024 Apr; 13(4):. PubMed ID: 38656788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Pappu R; Farag M; Borcherds W; Bremer A; Mittag T
    Res Sq; 2023 May; ():. PubMed ID: 37205474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian nuclear speckles exhibit stable association with chromatin: a biochemical study.
    Raina K; Rao BJ
    Nucleus; 2022 Dec; 13(1):58-73. PubMed ID: 35220893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson's disease.
    Shehadeh LA; Yu K; Wang L; Guevara A; Singer C; Vance J; Papapetropoulos S
    PLoS One; 2010 Feb; 5(2):e9104. PubMed ID: 20161708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation.
    Wang Y; Fan J; Wang J; Zhu Y; Xu L; Tong D; Cheng H
    Nucleic Acids Res; 2021 Oct; 49(18):10630-10643. PubMed ID: 34530450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant serine/arginine-rich proteins: versatile players in RNA processing.
    Jia ZC; Das D; Zhang Y; Fernie AR; Liu YG; Chen M; Zhang J
    Planta; 2023 May; 257(6):109. PubMed ID: 37145304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.