BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38381862)

  • 1. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
    Yi X; Zhang L; Friesner RA; McDermott A
    J Phys Chem Lett; 2024 Feb; 15(8):2270-2278. PubMed ID: 38381862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
    Yi X; Zhang L; Friesner RA; McDermott A
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
    Yi X; Fritzsching KJ; Rogawski R; Xu Y; McDermott AE
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2301053120. PubMed ID: 38346186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
    Li DW; Brüschweiler R
    J Biomol NMR; 2012 Nov; 54(3):257-65. PubMed ID: 22972619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of protein structural ensembles by chemical shifts.
    Baskaran K; Brunner K; Munte CE; Kalbitzer HR
    J Biomol NMR; 2010 Oct; 48(2):71-83. PubMed ID: 20680402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.
    Hong M; Mishanina TV; Cady SD
    J Am Chem Soc; 2009 Jun; 131(22):7806-16. PubMed ID: 19441789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpreting protein structural dynamics from NMR chemical shifts.
    Robustelli P; Stafford KA; Palmer AG
    J Am Chem Soc; 2012 Apr; 134(14):6365-74. PubMed ID: 22381384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures.
    Yi X; Fritzsching KJ; Rogawski R; Xu Y; McDermott AE
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid.
    Blade H; Blundell CD; Brown SP; Carson J; Dannatt HRW; Hughes LP; Menakath AK
    J Phys Chem A; 2020 Oct; 124(43):8959-8977. PubMed ID: 32946236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction.
    Lehtivarjo J; Tuppurainen K; Hassinen T; Laatikainen R; Peräkylä M
    J Biomol NMR; 2012 Mar; 52(3):257-67. PubMed ID: 22314705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
    De Gortari I; Portella G; Salvatella X; Bajaj VS; van der Wel PC; Yates JR; Segall MD; Pickard CJ; Payne MC; Vendruscolo M
    J Am Chem Soc; 2010 May; 132(17):5993-6000. PubMed ID: 20387894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple scale dynamics in proteins probed at multiple time scales through fluctuations of NMR chemical shifts.
    Calligari P; Abergel D
    J Phys Chem B; 2014 Apr; 118(14):3823-31. PubMed ID: 24628040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
    Shen Y; Bax A
    J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution in cryogenic solid state NMR: Challenges and solutions.
    Sergeyev IV; Fritzsching K; Rogawski R; McDermott A
    Protein Sci; 2024 Jul; 33(7):e4803. PubMed ID: 37847566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale.
    Tuttle T
    J Phys Chem A; 2009 Oct; 113(43):11723-33. PubMed ID: 19630417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
    Franks WT; Zhou DH; Wylie BJ; Money BG; Graesser DT; Frericks HL; Sahota G; Rienstra CM
    J Am Chem Soc; 2005 Sep; 127(35):12291-305. PubMed ID: 16131207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of site-specific conformational distributions in an unfolded protein by solid-state nuclear magnetic resonance.
    Hu KN; Havlin RH; Yau WM; Tycko R
    J Mol Biol; 2009 Oct; 392(4):1055-73. PubMed ID: 19647001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.