These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38382073)

  • 21. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Counting of Escherichia coli by a microflow cytometer based on a photonic-microfluidic integrated device.
    Guo T; Wei Y; Xu C; Watts BR; Zhang Z; Fang Q; Zhang H; Selvaganapathy PR; Deen MJ
    Electrophoresis; 2015 Jan; 36(2):298-304. PubMed ID: 25348197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical performance of an ultrasonic particle focusing flow cytometer.
    Goddard GR; Sanders CK; Martin JC; Kaduchak G; Graves SW
    Anal Chem; 2007 Nov; 79(22):8740-6. PubMed ID: 17924647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microflow cytometers with integrated hydrodynamic focusing.
    Frankowski M; Theisen J; Kummrow A; Simon P; Ragusch H; Bock N; Schmidt M; Neukammer J
    Sensors (Basel); 2013 Apr; 13(4):4674-93. PubMed ID: 23571670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays.
    Thangawng AL; Kim JS; Golden JP; Anderson GP; Robertson KL; Low V; Ligler FS
    Anal Bioanal Chem; 2010 Nov; 398(5):1871-81. PubMed ID: 20658281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-chip flow cytometer using integrated photonics for the detection of human leukocytes.
    Jooken S; Zinoviev K; Yurtsever G; De Proft A; de Wijs K; Jafari Z; Lebanov A; Jeevanandam G; Kotyrba M; Gorjup E; Fondu J; Lagae L; Libbrecht S; Van Dorpe P; Verellen N
    Sci Rep; 2024 May; 14(1):10921. PubMed ID: 38769346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.
    Kalb DM; Fencl FA; Woods TA; Swanson A; Maestas GC; Juárez JJ; Edwards BS; Shreve AP; Graves SW
    Anal Chem; 2017 Sep; 89(18):9967-9975. PubMed ID: 28823146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High throughput-per-footprint inertial focusing.
    Ciftlik AT; Ettori M; Gijs MA
    Small; 2013 Aug; 9(16):2764-73, 2828. PubMed ID: 23420756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulating Biomolecular Surface Interactions Using Tunable Acoustic Streaming.
    Pan S; You R; Chen X; Pan W; Li Q; Chen X; Pang W; Duan X
    ACS Sens; 2023 Sep; 8(9):3458-3467. PubMed ID: 37639526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluidics.
    Austin Suthanthiraraj PP; Graves SW
    Curr Protoc Cytom; 2013 Jul; Chapter 1():1.2.1-1.2.14. PubMed ID: 23835801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous Enrichment and Separation of Nanoparticles via Acoustic Streaming.
    Yang Y; He M; Jin K; Chen X; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2231-2234. PubMed ID: 33018451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multinode acoustic focusing for parallel flow cytometry.
    Piyasena ME; Austin Suthanthiraraj PP; Applegate RW; Goumas AM; Woods TA; López GP; Graves SW
    Anal Chem; 2012 Feb; 84(4):1831-9. PubMed ID: 22239072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer.
    Yun H; Bang H; Min J; Chung C; Chang JK; Han DC
    Lab Chip; 2010 Dec; 10(23):3243-54. PubMed ID: 20941407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.