These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 38382086)

  • 1. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits.
    Voothuluru P; Wu Y; Sharp RE
    Plant Cell; 2024 May; 36(5):1377-1409. PubMed ID: 38382086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and changes of endogenous hormones of mulberry roots in a simulated rocky desertification area.
    Feng D; Huang X; Liu Y; Willison JHM
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11171-11180. PubMed ID: 26920531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omics of root-to-shoot signaling under salt stress and water deficit.
    Pérez-Alfocea F; Ghanem ME; Gómez-Cadenas A; Dodd IC
    OMICS; 2011 Dec; 15(12):893-901. PubMed ID: 22136663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.
    Puértolas J; Alcobendas R; Alarcón JJ; Dodd IC
    Plant Cell Environ; 2013 Aug; 36(8):1465-75. PubMed ID: 23387513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cholodny-Went theory does not explain hydrotropism.
    Shkolnik D; Fromm H
    Plant Sci; 2016 Nov; 252():400-403. PubMed ID: 27717476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat.
    Zhao MR; Han YY; Feng YN; Li F; Wang W
    Plant Cell Rep; 2012 Apr; 31(4):671-85. PubMed ID: 22076248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying.
    Li X; Wilkinson S; Shen J; Forde BG; Davies WJ
    J Exp Bot; 2017 Dec; 68(21-22):5883-5894. PubMed ID: 29126265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water.
    Orman-Ligeza B; Morris EC; Parizot B; Lavigne T; Babé A; Ligeza A; Klein S; Sturrock C; Xuan W; Novák O; Ljung K; Fernandez MA; Rodriguez PL; Dodd IC; De Smet I; Chaumont F; Batoko H; Périlleux C; Lynch JP; Bennett MJ; Beeckman T; Draye X
    Curr Biol; 2018 Oct; 28(19):3165-3173.e5. PubMed ID: 30270188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root growth maintenance during water deficits: physiology to functional genomics.
    Sharp RE; Poroyko V; Hejlek LG; Spollen WG; Springer GK; Bohnert HJ; Nguyen HT
    J Exp Bot; 2004 Nov; 55(407):2343-51. PubMed ID: 15448181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat.
    Dalal M; Sahu S; Tiwari S; Rao AR; Gaikwad K
    Plant Physiol Biochem; 2018 Sep; 130():482-492. PubMed ID: 30081325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-directional, long-distance hormonal signalling between roots and shoots of soil water availability.
    Huntenburg K; Puértolas J; de Ollas C; Dodd IC
    Physiol Plant; 2022 May; 174(3):e13697. PubMed ID: 35526211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor.
    Calvo-Polanco M; Armada E; Zamarreño AM; García-Mina JM; Aroca R
    J Exp Bot; 2019 Nov; 70(21):6437-6446. PubMed ID: 31504720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere.
    Kang J; Peng Y; Xu W
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The root of ABA action in environmental stress response.
    Hong JH; Seah SW; Xu J
    Plant Cell Rep; 2013 Jul; 32(7):971-83. PubMed ID: 23571661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance.
    Kuromori T; Fujita M; Takahashi F; Yamaguchi-Shinozaki K; Shinozaki K
    Plant J; 2022 Jan; 109(2):342-358. PubMed ID: 34863007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common and specific responses to availability of mineral nutrients and water.
    Kudoyarova GR; Dodd IC; Veselov DS; Rothwell SA; Veselov SY
    J Exp Bot; 2015 Apr; 66(8):2133-44. PubMed ID: 25697793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning up the volume: How root branching adaptive responses aid water foraging.
    Mehra P; Fairburn R; Leftley N; Banda J; Bennett MJ
    Curr Opin Plant Biol; 2023 Oct; 75():102405. PubMed ID: 37379661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses.
    Feng W; Lindner H; Robbins NE; Dinneny JR
    Plant Cell; 2016 Aug; 28(8):1769-82. PubMed ID: 27503468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physiology of plant responses to drought.
    Gupta A; Rico-Medina A; Caño-Delgado AI
    Science; 2020 Apr; 368(6488):266-269. PubMed ID: 32299946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root.
    Antoni R; Gonzalez-Guzman M; Rodriguez L; Peirats-Llobet M; Pizzio GA; Fernandez MA; De Winne N; De Jaeger G; Dietrich D; Bennett MJ; Rodriguez PL
    Plant Physiol; 2013 Feb; 161(2):931-41. PubMed ID: 23370718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.