These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38382092)
21. Bioinformatics analysis reveals the landscape of immune cell infiltration and immune-related pathways participating in the progression of carotid atherosclerotic plaques. Tan L; Xu Q; Shi R; Zhang G Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):96-107. PubMed ID: 33480285 [TBL] [Abstract][Full Text] [Related]
22. Identification of key genes and miRNAs associated with carotid atherosclerosis based on mRNA-seq data. Mao Z; Wu F; Shan Y Medicine (Baltimore); 2018 Mar; 97(13):e9832. PubMed ID: 29595698 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive analysis of dysregulated genes associated with atherosclerotic plaque destabilization. Qian C; Jing Y; Xia M; Ye Q Exp Biol Med (Maywood); 2021 Dec; 246(23):2487-2494. PubMed ID: 34308657 [TBL] [Abstract][Full Text] [Related]
24. Identification of Key Pathways and Genes in Advanced Coronary Atherosclerosis Using Bioinformatics Analysis. Tan X; Zhang X; Pan L; Tian X; Dong P Biomed Res Int; 2017; 2017():4323496. PubMed ID: 29226137 [TBL] [Abstract][Full Text] [Related]
25. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Wang J; Kang Z; Liu Y; Li Z; Liu Y; Liu J Front Immunol; 2022; 13():956078. PubMed ID: 36211422 [TBL] [Abstract][Full Text] [Related]
26. Exploration of the Crucial Genes and Molecular Mechanisms Mediating Atherosclerosis and Abnormal Endothelial Shear Stress. Zhu G; Lai Y; Chen F; Qian J; Lin H; Yuan D; Yao T; Liu X Dis Markers; 2022; 2022():6306845. PubMed ID: 35990248 [TBL] [Abstract][Full Text] [Related]
27. Integrating machine learning algorithms and single-cell analysis to identify gut microbiota-related macrophage biomarkers in atherosclerotic plaques. Ke Y; Yue J; He J; Liu G Front Cell Infect Microbiol; 2024; 14():1395716. PubMed ID: 38716195 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the Underlying Genes and Mechanism of Macrophage-Enriched Ruptured Atherosclerotic Plaques Using Bioinformatics Method. Wang H; Liu D; Zhang H J Atheroscler Thromb; 2019 Jul; 26(7):636-658. PubMed ID: 30643084 [TBL] [Abstract][Full Text] [Related]
29. Immune-associated biomarkers identification for diagnosing carotid plaque progression with uremia through systematical bioinformatics and machine learning analysis. Liu C; Tang L; Zhou Y; Tang X; Zhang G; Zhu Q; Zhou Y Eur J Med Res; 2023 Feb; 28(1):92. PubMed ID: 36823662 [TBL] [Abstract][Full Text] [Related]
30. Novel biomarkers identified by weighted gene co-expression network analysis for atherosclerosis. Ni J; Huang K; Xu J; Lu Q; Chen C Herz; 2024 Jun; 49(3):198-209. PubMed ID: 37721628 [TBL] [Abstract][Full Text] [Related]
31. Identification of hub genes in unstable atherosclerotic plaque by conjoint analysis of bioinformatics. Zhang R; Ji Z; Yao Y; Zuo W; Yang M; Qu Y; Su Y; Ma G; Li Y Life Sci; 2020 Dec; 262():118517. PubMed ID: 33011223 [TBL] [Abstract][Full Text] [Related]
32. RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Alloza I; Goikuria H; Idro JL; Triviño JC; Fernández Velasco JM; Elizagaray E; García-Barcina M; Montoya-Murillo G; Sarasola E; Vega Manrique R; Freijo MDM; Vandenbroeck K Sci Rep; 2017 Jun; 7(1):3470. PubMed ID: 28615715 [TBL] [Abstract][Full Text] [Related]
33. Screening of potential gene markers for predicting carotid atheroma plaque formation using bioinformatics approaches. Wang G; Kuai D; Yang Y; Yang G; Wei Z; Zhao W Mol Med Rep; 2017 Apr; 15(4):2039-2048. PubMed ID: 28260035 [TBL] [Abstract][Full Text] [Related]
34. Identification and verification of pivotal genes promoting the progression of atherosclerosis based on WGCNA. Wen J; Ren T; Zheng J; Jiang X; Li Y; Jiang X; Jin X; Zhao H; Li J Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):276-285. PubMed ID: 37218975 [TBL] [Abstract][Full Text] [Related]
35. Identification of potential therapeutic targets for atherosclerosis by analysing the gene signature related to different immune cells and immune regulators in atheromatous plaques. Shen Y; Xu LR; Tang X; Lin CP; Yan D; Xue S; Qian RZ; Guo DQ BMC Med Genomics; 2021 Jun; 14(1):145. PubMed ID: 34082770 [TBL] [Abstract][Full Text] [Related]
36. Identification by microarray technology of key genes involved in the progression of carotid atherosclerotic plaque. Wang J; Wei B; Cao S; Xu F; Chen W; Lin H; Du C; Sun Z Genes Genet Syst; 2014; 89(6):253-8. PubMed ID: 25948119 [TBL] [Abstract][Full Text] [Related]
37. Crucial Gene Identification in Carotid Atherosclerosis Based on Peripheral Blood Mononuclear Cell (PBMC) Data by Weighted (Gene) Correlation Network Analysis (WGCNA). Chen S; Yang D; Liu Z; Li F; Liu B; Chen Y; Ye W; Zheng Y Med Sci Monit; 2020 Mar; 26():e921692. PubMed ID: 32160184 [TBL] [Abstract][Full Text] [Related]
38. Identification of co-expressed genes and immune infiltration features related to the progression of atherosclerosis. Gu J; Yang W; Lin S; Ying D J Appl Genet; 2024 May; 65(2):331-339. PubMed ID: 37996696 [TBL] [Abstract][Full Text] [Related]
39. Identifying Hub Genes and Immune Cell Infiltration for the Progression of Carotid Atherosclerotic Plaques in the Context of Predictive and Preventive Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. Zhang H; Huang Y; Li X; Chen W; Lun Y; Zhang J J Immunol Res; 2022; 2022():7657379. PubMed ID: 36304068 [TBL] [Abstract][Full Text] [Related]
40. Identification of potential therapeutic targets for plaque vulnerability based on an integrated analysis. Miao L; Qin YA; Yang ZJ; Shi WX; Wei XQ; Liu Y; Liu YL Nutr Metab Cardiovasc Dis; 2024 Jul; 34(7):1649-1659. PubMed ID: 38749785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]