BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38382098)

  • 1. When physics meets chemistry at the dynamic glass transition.
    Lu H
    Rep Prog Phys; 2024 Feb; ():. PubMed ID: 38382098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transition of supercooled water confined in cooperative two-state domain.
    Li P; Lu H; Fu YQ
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35114647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling.
    Masiewicz E; Grzybowski A; Grzybowska K; Pawlus S; Pionteck J; Paluch M
    Sci Rep; 2015 Sep; 5():13998. PubMed ID: 26365623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural study and its relation to dynamic heterogeneity in a polymer glass former.
    Balbuena C; Mariel Gianetti M; Rodolfo Soulé E
    Soft Matter; 2021 Mar; 17(12):3503-3512. PubMed ID: 33662077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids.
    Mei B; Sheridan GS; Evans CM; Schweizer KS
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2210094119. PubMed ID: 36194629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids.
    Zhang M; Liu L
    J Phys Condens Matter; 2018 Jun; 30(24):245401. PubMed ID: 29722681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural origin of thermal shrinkage in soda-lime silicate glass below the glass transition temperature: A theoretical investigation by microsecond timescale molecular dynamics simulations.
    Shimizu M; Murota T; Urata S; Takato Y; Hamada Y; Koike A; Shimotsuma Y; Fujita K; Miura K
    J Chem Phys; 2021 Jul; 155(4):044501. PubMed ID: 34340397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite dimension unravels the structural features at the glass transition.
    Alonso JM; Sanchez-Varretti FO; Frechero MA
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):88. PubMed ID: 34212243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic signature of the dynamic glass transition in hard spheres.
    Hermes M; Dijkstra M
    J Phys Condens Matter; 2010 Mar; 22(10):104114. PubMed ID: 21389448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic Dynamics of Supercooled Liquids from First Principles.
    Janssen LM; Reichman DR
    Phys Rev Lett; 2015 Nov; 115(20):205701. PubMed ID: 26613452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical issues of current research on the dynamics leading to glass transition.
    Capaccioli S; Thayyil MS; Ngai KL
    J Phys Chem B; 2008 Dec; 112(50):16035-49. PubMed ID: 19367954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids.
    Hung JH; Patra TK; Meenakshisundaram V; Mangalara JH; Simmons DS
    Soft Matter; 2019 Feb; 15(6):1223-1242. PubMed ID: 30556082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe.
    Mutneja A; Karmakar S
    Phys Rev E; 2023 Aug; 108(2):L022601. PubMed ID: 37723727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.
    Schmidtke B; Petzold N; Kahlau R; Hofmann M; Rössler EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041507. PubMed ID: 23214591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of an isothermal glass transition in metallic glasses.
    Sun YT; Ding DW; Lu Z; Li MZ; Liu YH; Wang WH
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the Nature of Structural Relaxation in Glassy d-Sorbitol.
    Krynski M; Mocanu F; Elliott S
    J Phys Chem B; 2020 Mar; 124(9):1833-1838. PubMed ID: 32017567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of molecular architecture on the physical properties of supercooled liquids studied by MD simulations: Density scaling and its relation to the equation of state.
    Koperwas K; Grzybowski A; Paluch M
    J Chem Phys; 2019 Jan; 150(1):014501. PubMed ID: 30621418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics.
    Royall CP; Turci F; Speck T
    J Chem Phys; 2020 Sep; 153(9):090901. PubMed ID: 32891096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.