BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38382109)

  • 1. Suppressing HIFU interference in ultrasound images using 1D U-Net-based neural networks.
    Yang K; Li Q; Liu H; Zeng Q; Cai D; Xu J; Zhou Y; Tsui PH; Zhou X
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38382109
    [No Abstract]   [Full Text] [Related]  

  • 2. Suppressing the HIFU interference in ultrasound guiding images with a diffusion-based deep learning model.
    Cai D; Yang K; Liu X; Xu J; Ran Y; Xu Y; Zhou X
    Comput Methods Programs Biomed; 2024 Jun; 254():108304. PubMed ID: 38954917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment.
    Yang K; Li Q; Xu J; Tang MX; Wang Z; Tsui PH; Zhou X
    IEEE Trans Med Imaging; 2024 Apr; PP():. PubMed ID: 38578852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harmonic Motion Imaging-Guided Focused Ultrasound Ablation: Comparison of Three Focused Ultrasound Interference Filtering Methods.
    Li XJ; Hossain MM; Lee SA; Saharkhiz N; Konofagou E
    Ultrasound Med Biol; 2024 Jan; 50(1):119-127. PubMed ID: 37872031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time and multimodality image-guided intelligent HIFU therapy for uterine fibroid.
    Ning G; Zhang X; Zhang Q; Wang Z; Liao H
    Theranostics; 2020; 10(10):4676-4693. PubMed ID: 32292522
    [No Abstract]   [Full Text] [Related]  

  • 6. Golay-Encoded Ultrasound Monitoring of Simultaneous High-Intensity Focused Ultrasound Treatment: A Phantom Study.
    Shen CC; Lin RC; Wu NH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1370-1381. PubMed ID: 35192463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound Monitoring of Simultaneous high-intensity focused ultrasound (HIFU) therapy using minimum-peak-sidelobe coded excitation.
    Shen CC; Wu NH
    Ultrasonics; 2024 Mar; 138():107224. PubMed ID: 38134515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.
    Rangraz P; Behnam H; Sobhebidari P; Tavakkoli J
    Ultrasound Med Biol; 2014 Dec; 40(12):2841-50. PubMed ID: 25438863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.
    Zhang S; Wan M; Zhong H; Xu C; Liao Z; Liu H; Wang S
    Ultrasound Med Biol; 2009 Nov; 35(11):1828-44. PubMed ID: 19716225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo.
    Tang S; Yang X; Shajudeen P; Sears C; Taraballi F; Weiner B; Tasciotti E; Dollahon D; Park H; Righetti R
    Med Image Anal; 2021 Dec; 74():102221. PubMed ID: 34520960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale and shape constrained localized region-based active contour segmentation of uterine fibroid ultrasound images in HIFU therapy.
    Liao X; Yuan Z; Zheng Q; Yin Q; Zhang D; Zhao J
    PLoS One; 2014; 9(7):e103334. PubMed ID: 25061939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding.
    Zhang D; Xu M; Quan L; Yang Y; Qin Q; Zhu W
    Phys Med Biol; 2015 Mar; 60(5):1807-30. PubMed ID: 25658334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of HIFU treatment using pulse inversion.
    Song JH; Yoo Y; Song TK; Chang JH
    Phys Med Biol; 2013 Aug; 58(15):5333-50. PubMed ID: 23863761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques].
    Jia LH; Lin HL; Zheng SW; Lin XJ; Zhang D; Yu H
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2024 Jan; 59(1):71-79. PubMed ID: 38228542
    [No Abstract]   [Full Text] [Related]  

  • 18. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.
    Jeong JS; Cannata JM; Shung KK
    Phys Med Biol; 2010 Apr; 55(7):1889-902. PubMed ID: 20224162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications.
    Jenne JW; Preusser T; Günther M
    Z Med Phys; 2012 Dec; 22(4):311-22. PubMed ID: 22884198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating 3-dimensional liver motion using deep learning and 2-dimensional ultrasound images.
    Yagasaki S; Koizumi N; Nishiyama Y; Kondo R; Imaizumi T; Matsumoto N; Ogawa M; Numata K
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):1989-1995. PubMed ID: 33009985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.