These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38382308)
1. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration. Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308 [TBL] [Abstract][Full Text] [Related]
2. Computational modeling and validation of human nasal airflow under various breathing conditions. Li C; Jiang J; Dong H; Zhao K J Biomech; 2017 Nov; 64():59-68. PubMed ID: 28893392 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model. Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633 [TBL] [Abstract][Full Text] [Related]
4. Realistic glottal motion and airflow rate during human breathing. Scheinherr A; Bailly L; Boiron O; Lagier A; Legou T; Pichelin M; Caillibotte G; Giovanni A Med Eng Phys; 2015 Sep; 37(9):829-39. PubMed ID: 26159687 [TBL] [Abstract][Full Text] [Related]
5. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES. Chen W; Wang L; Chen L; Ge H; Cui X Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114 [TBL] [Abstract][Full Text] [Related]
7. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205 [TBL] [Abstract][Full Text] [Related]
8. Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition - A CFD study. Wedel J; Steinmann P; Štrakl M; Hriberšek M; Cui Y; Ravnik J Comput Methods Appl Mech Eng; 2022 Nov; 401():115372. PubMed ID: 35919629 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics. Chen Y; Feng X; Shi X; Cai W; Li B; Zhao Y Med Biol Eng Comput; 2023 Jan; 61(1):259-270. PubMed ID: 36369608 [TBL] [Abstract][Full Text] [Related]
10. Effect of glottic geometry on breathing: three-dimensional unsteady numerical simulation of respiration in a case with congenital glottic web. Gökcan MK; Günaydinoğlu E; Kurtuluş DF Eur Arch Otorhinolaryngol; 2016 Oct; 273(10):3219-29. PubMed ID: 27177730 [TBL] [Abstract][Full Text] [Related]
11. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study. Zhao J; Feng Y; Fromen CA Comput Biol Med; 2020 Jan; 116():103532. PubMed ID: 31751812 [TBL] [Abstract][Full Text] [Related]
12. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Xu X; Wu J; Weng W; Fu M Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145 [TBL] [Abstract][Full Text] [Related]
13. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway. Liu X; Yan W; Liu Y; Choy YS; Wei Y Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841 [TBL] [Abstract][Full Text] [Related]
14. Numerical Simulation of Tidal Breathing Through the Human Respiratory Tract. Azarnoosh J; Sreenivas K; Arabshahi A J Biomech Eng; 2020 Jun; 142(6):. PubMed ID: 31956902 [TBL] [Abstract][Full Text] [Related]
15. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow. Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667 [TBL] [Abstract][Full Text] [Related]
16. A computational study of asymmetric glottal jet deflection during phonation. Zheng X; Mittal R; Bielamowicz S J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669 [TBL] [Abstract][Full Text] [Related]
17. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996 [TBL] [Abstract][Full Text] [Related]
18. Comparing turbulence models for flow through a rigid glottal model. Suh J; Frankel SH J Acoust Soc Am; 2008 Mar; 123(3):1237-40. PubMed ID: 18345812 [TBL] [Abstract][Full Text] [Related]
19. Unsteady flow characteristics through a human nasal airway. Lee JH; Na Y; Kim SK; Chung SK Respir Physiol Neurobiol; 2010 Jul; 172(3):136-46. PubMed ID: 20471501 [TBL] [Abstract][Full Text] [Related]
20. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Mylavarapu G; Murugappan S; Mihaescu M; Kalra M; Khosla S; Gutmark E J Biomech; 2009 Jul; 42(10):1553-1559. PubMed ID: 19501360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]