BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38382351)

  • 1. Coupling dechlorination and catalytic pyrolysis to produce carbon nanotubes from mixed polyvinyl chloride and polyethylene.
    Yang Y; Wang G; Lei S; Xiao H; Yang H; Chen H
    Waste Manag; 2024 Apr; 178():97-104. PubMed ID: 38382351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC.
    Ma W; Zhu Y; Cai N; Wang X; Chen Y; Yang H; Chen H
    Waste Manag; 2023 Sep; 169():62-69. PubMed ID: 37413846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate.
    Cao Q; Yuan G; Yin L; Chen D; He P; Wang H
    Waste Manag; 2016 Dec; 58():241-249. PubMed ID: 27596943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges.
    Ling M; Ma D; Hu X; Liu Z; Wang D; Feng Q
    Chemosphere; 2023 Mar; 316():137718. PubMed ID: 36592841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dechlorination of waste polyvinyl chloride (PVC) through non-thermal plasma.
    Song J; Wang J; Sima J; Zhu Y; Du X; Williams PT; Huang Q
    Chemosphere; 2023 Oct; 338():139535. PubMed ID: 37467857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online TG-FTIR-MS analysis of the catalytic pyrolysis of polyethylene and polyvinyl chloride microplastics.
    Liu X; Tian K; Chen Z; Wei W; Xu B; Ni BJ
    J Hazard Mater; 2023 Jan; 441():129881. PubMed ID: 36063710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes production from real-world waste plastics and the pyrolysis behaviour.
    Zhu Y; Miao J; Zhang Y; Li C; Wang Y; Cheng Y; Long M; Wang J; Wu C
    Waste Manag; 2023 Jul; 166():141-151. PubMed ID: 37172515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic stepwise pyrolysis for dechlorination and chemical recycling of PVC-containing mixed plastic wastes: Influence of temperature, heating rate, and catalyst.
    Hu Y; Li M; Zhou N; Yuan H; Guo Q; Jiao L; Ma Z
    Sci Total Environ; 2024 Jan; 908():168344. PubMed ID: 37951271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: Distribution of chlorine.
    Yu H; Qu J; Liu Y; Yun H; Li X; Zhou C; Jin Y; Zhang C; Dai J; Bi X
    Sci Total Environ; 2022 Feb; 806(Pt 4):150903. PubMed ID: 34653460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review.
    Lu L; Li W; Cheng Y; Liu M
    Waste Manag; 2023 Jul; 166():245-258. PubMed ID: 37196390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.
    Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H
    Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment.
    Kang J; Kim JY; Sung S; Lee Y; Gu S; Choi JW; Yoo CJ; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2024 Feb; 342():123074. PubMed ID: 38048870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal carbonisation of polyvinyl chloride in ethanol-water/water system for solid fuels: Dechlorination, characteristics analysis of hydrochar, and reaction path.
    Feng L; Hong C; Xing Y; Ling W; Hu J; Zhao C; Wang Y
    Environ Res; 2024 Mar; 244():117905. PubMed ID: 38101723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives.
    Zhao P; Li T; Yan W; Yuan L
    Environ Technol; 2018 Apr; 39(8):977-985. PubMed ID: 28394198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.
    Yuan G; Chen D; Yin L; Wang Z; Zhao L; Wang JY
    Waste Manag; 2014 Jun; 34(6):1045-50. PubMed ID: 24045169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas.
    Xu D; Yang S; Su Y; Shi L; Zhang S; Xiong Y
    Waste Manag; 2021 Feb; 121():95-104. PubMed ID: 33360310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-pyrolysis of Fe
    Ye L; Li T; Hong L
    Waste Manag; 2021 May; 126():832-842. PubMed ID: 33895565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts.
    He S; Xu Y; Zhang Y; Bell S; Wu C
    J Hazard Mater; 2021 Jan; 402():123726. PubMed ID: 33254760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.