These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3838252)

  • 1. Ca2+-induced phase separation in black lipid membranes and its effect on the transport of a hydrophobic ion.
    Miller A; Schmidt G; Eibl H; Knoll W
    Biochim Biophys Acta; 1985 Mar; 813(2):221-9. PubMed ID: 3838252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-induced lateral phase separation in black lipid membranes and its coupling to the ion translocation by gramicidin.
    Mittler-Neher S; Knoll W
    Biochim Biophys Acta; 1993 Nov; 1152(2):259-69. PubMed ID: 7692968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transport of hydrophobic ions across lipid bilayers.
    Braun HP
    Biochim Biophys Acta; 1987 Oct; 903(2):292-302. PubMed ID: 3651464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral order in mixed lipid bilayers and its influence on ion translocation by gramicidin: a model for the structure-function relationship in membranes.
    Henkel T; Mittler S; Pfeiffer W; Rötzer H; Apell HJ; Knoll W
    Biochimie; 1989 Jan; 71(1):89-98. PubMed ID: 2470421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between Ca2+ and dipalmitoylphosphatidylcholine membranes. I. Transition anomalies of ultrasonic properties.
    Aruga S; Kataoka R; Mitaku S
    Biophys Chem; 1985 Mar; 21(3-4):265-75. PubMed ID: 3838685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Ca2+ and dipalmitoylphosphatidylcholine membranes. II. Fluorescence anisotropy study.
    Kataoka R; Aruga S; Mitaku S; Kinosita K; Ikegami A
    Biophys Chem; 1985 Mar; 21(3-4):277-84. PubMed ID: 3838686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic interactions at charged lipid membranes. Kinetics of the electrostatically triggered phase transition.
    Strehlow U; Jähnig F
    Biochim Biophys Acta; 1981 Mar; 641(2):301-10. PubMed ID: 7213721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies.
    Benz R; Läuger P; Janko K
    Biochim Biophys Acta; 1976 Dec; 455(3):701-20. PubMed ID: 999935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave-guide spectroscopy on planar lipid bilayers doped with hydrophobic ions.
    Braun HP; Vogel M
    Biochim Biophys Acta; 1989 Jan; 978(2):223-30. PubMed ID: 2914137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymyxin interaction with negatively charged lipid bilayer membranes and the competitive effect of Ca2+.
    Sixl F; Galla HJ
    Biochim Biophys Acta; 1981 May; 643(3):626-35. PubMed ID: 6264957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain formation induced by the adsorption of charged proteins on mixed lipid membranes.
    Mbamala EC; Ben-Shaul A; May S
    Biophys J; 2005 Mar; 88(3):1702-14. PubMed ID: 15626713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes.
    Sinha BA; Smejtek P
    J Membr Biol; 1983; 71(1-2):119-30. PubMed ID: 6687614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy.
    Vareille G; Marion P; Kraus JL; Castaing M
    Biochim Biophys Acta; 1993 Feb; 1146(1):25-37. PubMed ID: 8443224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric investigation of polymyxin binding to phosphatidic acid bilayers.
    Sixl F; Galla HJ
    Biochim Biophys Acta; 1982 Dec; 693(2):466-78. PubMed ID: 6297559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gangliosides on phospholipid bilayers: a study with the lipophilic ions relaxation method.
    Usai C; Robello M; Gambale F; Marchetti C
    J Membr Biol; 1984; 82(1):15-23. PubMed ID: 6502698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR.
    Koter M; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Dec; 514(2):255-63. PubMed ID: 737172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-mediated zero voltage conductance of hydrophobic ions through bilayer lipid membranes.
    Gavach C; Sandeaux R
    Biochim Biophys Acta; 1975 Nov; 413(1):33-44. PubMed ID: 1191689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical noise from lipid bilayer membranes in the presence of hydrophobic ions.
    Kolb HA; Läuger P
    J Membr Biol; 1977 Dec; 37(3-4):321-45. PubMed ID: 599554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine.
    van Dijck PW; de Kruijff B; Verkleij AJ; van Deenen LL; de Gier J
    Biochim Biophys Acta; 1978 Sep; 512(1):84-96. PubMed ID: 29665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.