These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38382540)

  • 1. Selective degradation of ribosomes during oncogene-induced senescence: molecular insights and biological perspectives.
    López AR; Frankel LB
    Autophagy; 2024 Jun; 20(6):1462-1464. PubMed ID: 38382540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy-mediated control of ribosome homeostasis in oncogene-induced senescence.
    López AR; Jørgensen MH; Havelund JF; Arendrup FS; Kolapalli SP; Nielsen TM; Pais E; Beese CJ; Abdul-Al A; Vind AC; Bartek J; Bekker-Jensen S; Montes M; Galanos P; Faergeman N; Happonen L; Frankel LB
    Cell Rep; 2023 Nov; 42(11):113381. PubMed ID: 37930887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How autophagy both activates and inhibits cellular senescence.
    Kang C; Elledge SJ
    Autophagy; 2016 May; 12(5):898-9. PubMed ID: 27129029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogene-induced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF.
    Ko A; Han SY; Choi CH; Cho H; Lee MS; Kim SY; Song JS; Hong KM; Lee HW; Hewitt SM; Chung JY; Song J
    Cell Death Differ; 2018 Jun; 25(6):1050-1062. PubMed ID: 29472714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy facilitates oncogene-induced senescence.
    Narita M; Young AR; Narita M
    Autophagy; 2009 Oct; 5(7):1046-7. PubMed ID: 19652542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts.
    Bengsch F; Tu Z; Tang HY; Zhu H; Speicher DW; Zhang R
    Cell Cycle; 2015; 14(10):1540-7. PubMed ID: 25785348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of cytosolic ribosomes by autophagy-related pathways.
    Bassham DC; MacIntosh GC
    Plant Sci; 2017 Sep; 262():169-174. PubMed ID: 28716412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease.
    Kraft C; Deplazes A; Sohrmann M; Peter M
    Nat Cell Biol; 2008 May; 10(5):602-10. PubMed ID: 18391941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microscopy.
    Narita M; Narita M
    Methods Mol Biol; 2017; 1534():89-98. PubMed ID: 27812870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita.
    Bellodi C; Kopmar N; Ruggero D
    EMBO J; 2010 Jun; 29(11):1865-76. PubMed ID: 20453831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy impairment induces premature senescence in primary human fibroblasts.
    Kang HT; Lee KB; Kim SY; Choi HR; Park SC
    PLoS One; 2011; 6(8):e23367. PubMed ID: 21858089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations.
    Quijano C; Cao L; Fergusson MM; Romero H; Liu J; Gutkind S; Rovira II; Mohney RP; Karoly ED; Finkel T
    Cell Cycle; 2012 Apr; 11(7):1383-92. PubMed ID: 22421146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncogene-induced senescence: From biology to therapy.
    Zhu H; Blake S; Kusuma FK; Pearson RB; Kang J; Chan KT
    Mech Ageing Dev; 2020 Apr; 187():111229. PubMed ID: 32171687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence.
    Papaspyropoulos A; Hazapis O; Altulea A; Polyzou A; Verginis P; Evangelou K; Fousteri M; Papantonis A; Demaria M; Gorgoulis V
    Aging Cell; 2023 Sep; 22(9):e13893. PubMed ID: 37547972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence.
    Salazar G; Cullen A; Huang J; Zhao Y; Serino A; Hilenski L; Patrushev N; Forouzandeh F; Hwang HS
    Autophagy; 2020 Jun; 16(6):1092-1110. PubMed ID: 31441382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Immortal Senescence.
    Bianchi-Smiraglia A; Lipchick BC; Nikiforov MA
    Methods Mol Biol; 2017; 1534():1-15. PubMed ID: 27812863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogene-induced senescence: a double edged sword in cancer.
    Liu XL; Ding J; Meng LH
    Acta Pharmacol Sin; 2018 Oct; 39(10):1553-1558. PubMed ID: 29620049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular senescence and protein degradation: breaking down cancer.
    Deschênes-Simard X; Lessard F; Gaumont-Leclerc MF; Bardeesy N; Ferbeyre G
    Cell Cycle; 2014; 13(12):1840-58. PubMed ID: 24866342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting chaperone-mediated autophagy dysfunction to cellular senescence.
    Moreno-Blas D; Gorostieta-Salas E; Castro-Obregón S
    Ageing Res Rev; 2018 Jan; 41():34-41. PubMed ID: 29113832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of senescence and the SASP by the transcription factor C/EBPβ.
    Salotti J; Johnson PF
    Exp Gerontol; 2019 Dec; 128():110752. PubMed ID: 31648009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.