These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38382540)

  • 21. Fanconi anemia proteins counteract the implementation of the oncogene-induced senescence program.
    Helbling-Leclerc A; Dessarps-Freichey F; Evrard C; Rosselli F
    Sci Rep; 2019 Nov; 9(1):17024. PubMed ID: 31745226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation.
    Kim JJ; Lee SB; Yi SY; Han SA; Kim SH; Lee JM; Tong SY; Yin P; Gao B; Zhang J; Lou Z
    Cell Res; 2017 Feb; 27(2):274-293. PubMed ID: 27958289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence.
    Kaplon J; Zheng L; Meissl K; Chaneton B; Selivanov VA; Mackay G; van der Burg SH; Verdegaal EM; Cascante M; Shlomi T; Gottlieb E; Peeper DS
    Nature; 2013 Jun; 498(7452):109-12. PubMed ID: 23685455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence.
    Tai H; Wang Z; Gong H; Han X; Zhou J; Wang X; Wei X; Ding Y; Huang N; Qin J; Zhang J; Wang S; Gao F; Chrzanowska-Lightowlers ZM; Xiang R; Xiao H
    Autophagy; 2017 Jan; 13(1):99-113. PubMed ID: 27791464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence.
    Morancho B; Martínez-Barriocanal Á; Villanueva J; Arribas J
    Breast Cancer Res; 2015 Aug; 17(1):106. PubMed ID: 26260680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1.
    Avolio R; Inglés-Ferrándiz M; Ciocia A; Coll O; Bonnin S; Guitart T; Ribó A; Gebauer F
    Cell Rep; 2022 Jan; 38(2):110211. PubMed ID: 35021076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Ins and Outs of Autophagic Ribosome Turnover.
    Kazibwe Z; Liu AY; MacIntosh GC; Bassham DC
    Cells; 2019 Dec; 8(12):. PubMed ID: 31835634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Senescence; an endogenous anticancer mechanism.
    Vargas J; Feltes BC; Poloni Jde F; Lenz G; Bonatto D
    Front Biosci (Landmark Ed); 2012 Jun; 17(7):2616-43. PubMed ID: 22652801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence.
    Mannava S; Moparthy KC; Wheeler LJ; Natarajan V; Zucker SN; Fink EE; Im M; Flanagan S; Burhans WC; Zeitouni NC; Shewach DS; Mathews CK; Nikiforov MA
    Am J Pathol; 2013 Jan; 182(1):142-51. PubMed ID: 23245831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence.
    Lenain C; Gusyatiner O; Douma S; van den Broek B; Peeper DS
    Carcinogenesis; 2015 Nov; 36(11):1263-74. PubMed ID: 26354777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations of the translation apparatus during aging and stress response.
    Gonskikh Y; Polacek N
    Mech Ageing Dev; 2017 Dec; 168():30-36. PubMed ID: 28414025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.
    Kilic Eren M; Tabor V
    PLoS One; 2014; 9(7):e101064. PubMed ID: 24984035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Epstein-Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy.
    Ylä-Anttila P; Gupta S; Masucci MG
    Autophagy; 2021 Nov; 17(11):3461-3474. PubMed ID: 33509017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for ubiquitin in selective autophagy.
    Kirkin V; McEwan DG; Novak I; Dikic I
    Mol Cell; 2009 May; 34(3):259-69. PubMed ID: 19450525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All cells are created equal in the sight of autophagy: selective autophagy maintains homeostasis in senescent cells.
    Kim J; Lee Y; Jeon T; Kim MS; Kang C
    Autophagy; 2021 Oct; 17(10):3260-3261. PubMed ID: 34313530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts: the role of estrogen in bone cell senescence.
    Wei Y; Fu J; Wu W; Ma P; Ren L; Wu J
    Cell Tissue Res; 2021 Nov; 386(2):297-308. PubMed ID: 34223980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lost to translation: when autophagy targets mature ribosomes.
    Beau I; Esclatine A; Codogno P
    Trends Cell Biol; 2008 Jul; 18(7):311-4. PubMed ID: 18508269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum.
    Stephani M; Picchianti L; Dagdas Y
    Autophagy; 2021 Feb; 17(2):586-587. PubMed ID: 33164651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional landscape of oncogene-induced senescence: a machine learning-based meta-analytic approach.
    Han Y; Micklem G; Kim SY
    Ageing Res Rev; 2023 Mar; 85():101849. PubMed ID: 36621646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/α-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy.
    Feng L; Zhang J; Zhu N; Ding Q; Zhang X; Yu J; Qiang W; Zhang Z; Ma Y; Huang D; Shen Y; Fang S; Yu Y; Wang H; Shen Y
    Autophagy; 2017 Apr; 13(4):686-702. PubMed ID: 28121484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.