BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38382769)

  • 21. Improving the Effectiveness of the Conical Screen Mill as a Dry-Coating Process at Lab and Manufacturing Scale.
    Capece M; Larson J
    Pharm Res; 2022 Dec; 39(12):3175-3184. PubMed ID: 35178662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery.
    Ren G; Clancy C; Tamer TM; Schaller B; Walker GM; Collins MN
    Int J Biol Macromol; 2019 Dec; 141():936-946. PubMed ID: 31487516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study on the coherence of compacted binary composites of microcrystalline cellulose and paracetamol.
    Mohammed H; Briscoe BJ; Pitt KG
    Eur J Pharm Biopharm; 2006 May; 63(1):19-25. PubMed ID: 16326083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Method to study the effect of blend flowability on the homogeneity of acetaminophen.
    Llusá M; Pingali K; Muzzio FJ
    Drug Dev Ind Pharm; 2013 Feb; 39(2):252-8. PubMed ID: 22494110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.
    Qu L; Zhou QT; Gengenbach T; Denman JA; Stewart PJ; Hapgood KP; Gamlen M; Morton DA
    Drug Dev Ind Pharm; 2015 May; 41(5):825-37. PubMed ID: 24738790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle.
    Rojas J; Kumar V
    Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.
    Zhou QT; Armstrong B; Larson I; Stewart PJ; Morton DA
    Eur J Pharm Sci; 2010 Aug; 40(5):412-21. PubMed ID: 20433919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploiting synergistic effects of brittle and plastic excipients in directly compressible formulations of sitagliptin phosphate and sitagliptin hydrochloride.
    Zakowiecki D; Edinger P; Papaioannou M; Hess T; Kubiak B; Terlecka A
    Pharm Dev Technol; 2022 Jul; 27(6):702-713. PubMed ID: 35913021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Particle Surface Area and Adhesion Force in the Sticking Behavior of Pharmaceutical Powders.
    Capece M
    J Pharm Sci; 2019 Dec; 108(12):3803-3813. PubMed ID: 31473214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating.
    Zhou Q; Armstrong B; Larson I; Stewart PJ; Morton DA
    J Pharm Sci; 2010 Feb; 99(2):969-81. PubMed ID: 19795479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties.
    Chaheen M; Bataille B; Yassine A; Belamie E; Sharkawi T
    J Pharm Sci; 2019 Oct; 108(10):3319-3328. PubMed ID: 31145923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of surface-engineered coarse microcrystalline cellulose through dry coating with silica nanoparticles.
    Zhou Q; Shi L; Chattoraj S; Sun CC
    J Pharm Sci; 2012 Nov; 101(11):4258-66. PubMed ID: 22927169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation.
    Paul S; Sun CC
    Pharm Res; 2018 Mar; 35(6):113. PubMed ID: 29603027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearate.
    Mehrotra A; Llusa M; Faqih A; Levin M; Muzzio FJ
    Int J Pharm; 2007 May; 336(2):284-91. PubMed ID: 17236729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.