BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38382769)

  • 41. Beyond Brittle/Ductile Classification: Applying Proper Constitutive Mechanical Metrics to Understand the Compression Characteristics of Pharmaceutical Materials.
    Yost E; Mazel V; Sluga KK; Nagapudi K; Muliadi AR
    J Pharm Sci; 2022 Jul; 111(7):1984-1991. PubMed ID: 35007567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients.
    Casalderrey M; Souto C; Concheiro A; Gómez-Amoza JL; Martínez-Pacheco R
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):398-401. PubMed ID: 15056951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: Comparison of microcrystalline cellulose and two nano-silicas.
    Zhang Y; Li J; Gao Y; Wu F; Hong Y; Shen L; Lin X
    Int J Pharm; 2022 Jun; 622():121837. PubMed ID: 35597395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of directly compressible powders via co-spray drying.
    Gonnissen Y; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2007 Aug; 67(1):220-6. PubMed ID: 17317123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple predictive model for the tensile strength of binary tablets.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Eur J Pharm Sci; 2005 Jun; 25(2-3):331-6. PubMed ID: 15911230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Chitosan-Microcrystalline Cellulose Blends as Direct Compression Excipients.
    Olorunsola EO; Akpan GA; Adikwu MU
    J Drug Deliv; 2017; 2017():8563858. PubMed ID: 29410919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mixture design applied to optimize a directly compressible powder produced via cospray drying.
    Gonnissen Y; Gonçalves SI; Remon JP; Vervaet C
    Drug Dev Ind Pharm; 2008 Mar; 34(3):248-57. PubMed ID: 18363140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.
    Wei G; Mangal S; Denman J; Gengenbach T; Lee Bonar K; Khan RI; Qu L; Li T; Zhou QT
    J Pharm Sci; 2017 Oct; 106(10):3022-3032. PubMed ID: 28551425
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spray-dried cellulose nanofibers as novel tablet excipient.
    Kolakovic R; Peltonen L; Laaksonen T; Putkisto K; Laukkanen A; Hirvonen J
    AAPS PharmSciTech; 2011 Dec; 12(4):1366-73. PubMed ID: 22005956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and evaluation of orally rapidly disintegrating tablets containing taste-masked particles using one-step dry-coated tablets technology.
    Kondo K; Niwa T; Ozeki Y; Ando M; Danjo K
    Chem Pharm Bull (Tokyo); 2011; 59(10):1214-20. PubMed ID: 21963629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.
    Qu L; Morton DA; Zhou QT
    Curr Pharm Des; 2015; 21(40):5802-14. PubMed ID: 26446461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive powder flow characterization with reduced testing.
    Chendo C; Pinto JF; Paisana MC
    Int J Pharm; 2023 Jul; 642():123107. PubMed ID: 37279868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal coating via spray drying to improve powder tabletability.
    Vanhoorne V; Peeters E; Van Snick B; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2014 Nov; 88(3):939-44. PubMed ID: 25445306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.