These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38382830)

  • 1. Designed modular protein hydrogels for biofabrication.
    Dranseike D; Ota Y; Edwardson TGW; Guzzi EA; Hori M; Nakic ZR; Deshmukh DV; Levasseur MD; Mattli K; Tringides CM; Zhou J; Hilvert D; Peters C; Tibbitt MW
    Acta Biomater; 2024 Mar; 177():107-117. PubMed ID: 38382830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.
    Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W
    Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.
    Sengupta D; Heilshorn SC
    Tissue Eng Part B Rev; 2010 Jun; 16(3):285-93. PubMed ID: 20141386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable mechanical stability and deformation response of a resilin-based elastomer.
    Li L; Teller S; Clifton RJ; Jia X; Kiick KL
    Biomacromolecules; 2011 Jun; 12(6):2302-10. PubMed ID: 21553895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.
    Xu Y; Li Z; Li X; Fan Z; Liu Z; Xie X; Guan J
    Acta Biomater; 2015 Oct; 26():23-33. PubMed ID: 26277379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels.
    Liyanage W; Ardoña HA; Mao HQ; Tovar JD
    Bioconjug Chem; 2017 Mar; 28(3):751-759. PubMed ID: 28292179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture.
    Hilderbrand AM; Ford EM; Guo C; Sloppy JD; Kloxin AM
    Biomater Sci; 2020 Mar; 8(5):1256-1269. PubMed ID: 31854388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels.
    Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM
    Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
    Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J
    Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 25th anniversary article: Engineering hydrogels for biofabrication.
    Malda J; Visser J; Melchels FP; Jüngst T; Hennink WE; Dhert WJ; Groll J; Hutmacher DW
    Adv Mater; 2013 Sep; 25(36):5011-28. PubMed ID: 24038336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering.
    Huang CC; Ravindran S; Yin Z; George A
    Biomaterials; 2014 Jul; 35(20):5316-5326. PubMed ID: 24713184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Based Hydrogels for Tissue Engineering.
    Schloss AC; Williams DM; Regan LJ
    Adv Exp Med Biol; 2016; 940():167-177. PubMed ID: 27677513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix.
    Wisdom K; Chaudhuri O
    Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationally designed synthetic protein hydrogels with predictable mechanical properties.
    Wu J; Li P; Dong C; Jiang H; Bin Xue ; Gao X; Qin M; Wang W; Bin Chen ; Cao Y
    Nat Commun; 2018 Feb; 9(1):620. PubMed ID: 29434258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.