These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38382846)
1. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. Norris AC; Mansueto AJ; Jimenez M; Yazlovitskaya EM; Jain BK; Graham TR Biochim Biophys Acta Mol Cell Res; 2024 Apr; 1871(4):119700. PubMed ID: 38382846 [TBL] [Abstract][Full Text] [Related]
2. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic. Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510 [TBL] [Abstract][Full Text] [Related]
3. Dynamic membranes: the multiple roles of P4 and P5 ATPases. López-Marqués RL; Davis JA; Harper JF; Palmgren M Plant Physiol; 2021 Apr; 185(3):619-631. PubMed ID: 33822217 [TBL] [Abstract][Full Text] [Related]
4. Plant P4-ATPase lipid flippases: How are they regulated? Villagrana R; López-Marqués RL Biochim Biophys Acta Mol Cell Res; 2024 Jan; 1871(1):119599. PubMed ID: 37741575 [TBL] [Abstract][Full Text] [Related]
5. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases. Shin HW; Takatsu H Chem Pharm Bull (Tokyo); 2022; 70(8):524-532. PubMed ID: 35908917 [TBL] [Abstract][Full Text] [Related]
6. Impacts of P4-ATPase Deletion on Membrane Asymmetry and Disease Development. Li X; Li S; Zhang W; Wang Q; Zou W Cell Biochem Funct; 2024 Sep; 42(7):e70004. PubMed ID: 39425455 [TBL] [Abstract][Full Text] [Related]
7. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773 [TBL] [Abstract][Full Text] [Related]
8. Plant transbilayer lipid asymmetry and the role of lipid flippases. Villagrana R; López-Marqués RL Emerg Top Life Sci; 2023 Mar; 7(1):21-29. PubMed ID: 36562347 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes of a phosphatidylcholine flippase in lipid membranes. Xu J; He Y; Wu X; Li L Cell Rep; 2022 Mar; 38(11):110518. PubMed ID: 35294892 [TBL] [Abstract][Full Text] [Related]
13. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Andersen JP; Vestergaard AL; Mikkelsen SA; Mogensen LS; Chalat M; Molday RS Front Physiol; 2016; 7():275. PubMed ID: 27458383 [TBL] [Abstract][Full Text] [Related]
14. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Huang Y; Takar M; Best JT; Graham TR Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280 [TBL] [Abstract][Full Text] [Related]
15. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain. Baldridge RD; Xu P; Graham TR J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217 [TBL] [Abstract][Full Text] [Related]
17. The transport mechanism of P4 ATPase lipid flippases. López-Marqués RL; Gourdon P; Günther Pomorski T; Palmgren M Biochem J; 2020 Oct; 477(19):3769-3790. PubMed ID: 33045059 [TBL] [Abstract][Full Text] [Related]
18. Consensus, controversies, and conundrums of P4-ATPases: The emerging face of eukaryotic lipid flippases. Duan HD; Li H J Biol Chem; 2024 Jun; 300(6):107387. PubMed ID: 38763336 [TBL] [Abstract][Full Text] [Related]
19. Linking phospholipid flippases to vesicle-mediated protein transport. Muthusamy BP; Natarajan P; Zhou X; Graham TR Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470 [TBL] [Abstract][Full Text] [Related]
20. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane. Takar M; Wu Y; Graham TR J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]