BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38382863)

  • 1. Estimating and approaching the maximum information rate of noninvasive visual brain-computer interface.
    Shi N; Miao Y; Huang C; Li X; Song Y; Chen X; Wang Y; Gao X
    Neuroimage; 2024 Apr; 289():120548. PubMed ID: 38382863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 3. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 10. A High-Rate Hybrid BCI System Based on High-Frequency SSVEP and sEMG.
    Cui H; Chi X; Wang L; Chen X
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):5688-5698. PubMed ID: 37792662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces.
    Xiao X; Wang L; Xu M; Wang K; Jung TP; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37683663
    [No Abstract]   [Full Text] [Related]  

  • 14. High-Frequency SSVEP Stimulation Paradigm Based On Dual Frequency Modulation
    Liang L; Yang C; Wang Y; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6184-6187. PubMed ID: 31947255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing Information Transfer in SSVEP-Based Brain-Computer Interfaces.
    Sengelmann M; Engel AK; Maye A
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):381-394. PubMed ID: 28113192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear.
    Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637
    [No Abstract]   [Full Text] [Related]  

  • 20. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.