These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38382904)
1. Deep Learning in Image-Based Plant Phenotyping. Murphy KM; Ludwig E; Gutierrez J; Gehan MA Annu Rev Plant Biol; 2024 Jul; 75(1):771-795. PubMed ID: 38382904 [TBL] [Abstract][Full Text] [Related]
2. Bagging Improves the Performance of Deep Learning-Based Semantic Segmentation with Limited Labeled Images: A Case Study of Crop Segmentation for High-Throughput Plant Phenotyping. Zhan Y; Zhou Y; Bai G; Ge Y Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894212 [TBL] [Abstract][Full Text] [Related]
3. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping. Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794 [TBL] [Abstract][Full Text] [Related]
4. Review: Application of Artificial Intelligence in Phenomics. Nabwire S; Suh HK; Kim MS; Baek I; Cho BK Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202291 [TBL] [Abstract][Full Text] [Related]
5. Image Harvest: an open-source platform for high-throughput plant image processing and analysis. Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917 [TBL] [Abstract][Full Text] [Related]
6. An Overview of High-Throughput Crop Phenotyping: Platform, Image Analysis, Data Mining, and Data Management. Yang W; Feng H; Hu X; Song J; Guo J; Lu B Methods Mol Biol; 2024; 2787():3-38. PubMed ID: 38656479 [TBL] [Abstract][Full Text] [Related]
7. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based high-throughput phenotyping can drive future discoveries in plant reproductive biology. Warman C; Fowler JE Plant Reprod; 2021 Jun; 34(2):81-89. PubMed ID: 33725183 [TBL] [Abstract][Full Text] [Related]
9. High-throughput phenotyping for crop improvement in the genomics era. Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612 [TBL] [Abstract][Full Text] [Related]
10. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. Perez-Sanz F; Navarro PJ; Egea-Cortines M Gigascience; 2017 Nov; 6(11):1-18. PubMed ID: 29048559 [TBL] [Abstract][Full Text] [Related]
11. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735 [TBL] [Abstract][Full Text] [Related]
12. PlantPAD: a platform for large-scale image phenomics analysis of disease in plant science. Dong X; Zhao K; Wang Q; Wu X; Huang Y; Wu X; Zhang T; Dong Y; Gao Y; Chen P; Liu Y; Chen D; Wang S; Yang X; Yang J; Wang Y; Gao Z; Wu X; Bai Q; Li S; Hao G Nucleic Acids Res; 2024 Jan; 52(D1):D1556-D1568. PubMed ID: 37897364 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning in Image Cytometry: A Review. Gupta A; Harrison PJ; Wieslander H; Pielawski N; Kartasalo K; Partel G; Solorzano L; Suveer A; Klemm AH; Spjuth O; Sintorn IM; Wählby C Cytometry A; 2019 Apr; 95(4):366-380. PubMed ID: 30565841 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning for Image Analysis: Leaf Disease Segmentation. F Danilevicz M; Bayer PE Methods Mol Biol; 2022; 2443():429-449. PubMed ID: 35037219 [TBL] [Abstract][Full Text] [Related]
15. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting. Giuffrida MV; Doerner P; Tsaftaris SA Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442 [TBL] [Abstract][Full Text] [Related]
16. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P Elife; 2021 Jan; 10():. PubMed ID: 33459255 [TBL] [Abstract][Full Text] [Related]
17. Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Toda Y; Okura F; Ito J; Okada S; Kinoshita T; Tsuji H; Saisho D Commun Biol; 2020 Apr; 3(1):173. PubMed ID: 32296118 [TBL] [Abstract][Full Text] [Related]
18. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. Lee U; Chang S; Putra GA; Kim H; Kim DH PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690 [TBL] [Abstract][Full Text] [Related]
19. Machine learning and image analysis in vascular surgery. Tomihama RT; Dass S; Chen S; Kiang SC Semin Vasc Surg; 2023 Sep; 36(3):413-418. PubMed ID: 37863613 [TBL] [Abstract][Full Text] [Related]
20. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]