These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38383293)

  • 21. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle.
    Allen DG; Kurihara S
    J Physiol; 1982 Jun; 327():79-94. PubMed ID: 7120151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of OR-1896, a metabolite of levosimendan, on force of contraction and Ca2+ transients under acidotic condition in aequorin-loaded canine ventricular myocardium.
    Takahashi R; Endoh M
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):440-8. PubMed ID: 12382073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tension-dependent changes of the intracellular Ca2+ transients in ferret ventricular muscles.
    Kurihara S; Komukai K
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):617-25. PubMed ID: 8788928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurements of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia.
    Allen DG; Orchard CH
    J Mol Cell Cardiol; 1984 Feb; 16(2):117-28. PubMed ID: 6371253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coming full circle: membrane potential, sarcolemmal calcium influx and excitation-contraction coupling in heart muscle.
    Hobai IA; Levi AJ
    Cardiovasc Res; 1999 Dec; 44(3):477-87. PubMed ID: 10690279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mibefradil improves beta-adrenergic responsiveness and intracellular Ca(2+) handling in hypertrophied rat myocardium.
    Min JY; Meissner A; Wang J; Morgan JP
    Exp Biol Med (Maywood); 2002 May; 227(5):336-44. PubMed ID: 11976404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium cycling proteins and force-frequency relationship in heart failure.
    Hasenfuss G; Reinecke H; Studer R; Pieske B; Meyer M; Drexler H; Just H
    Basic Res Cardiol; 1996; 91 Suppl 2():17-22. PubMed ID: 8957539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracellular calcium transients and developed tension in rat heart muscle. A mechanism for the negative interval-strength relationship.
    Orchard CH; Lakatta EG
    J Gen Physiol; 1985 Nov; 86(5):637-51. PubMed ID: 4067571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism of the increase of tonic tension produced by caffeine in sheep cardiac Purkinje fibres.
    Eisner DA; Valdeolmillos M
    J Physiol; 1985 Jul; 364():313-26. PubMed ID: 4032302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Ca++-channel blocking agents on calcium transients and tension development in isolated mammalian heart muscle.
    Morgan JP; Wier WG; Hess P; Blinks JR
    Circ Res; 1983 Feb; 52(2 Pt 2):I47-52. PubMed ID: 6831653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of a novel cardiotonic agent, Org 9731, on force and aequorin light transients in intact ventricular myocardium of the dog: involvement of a cyclic AMP-mediated mechanism and myofibrillar responsiveness to Ca2+ ions.
    Kawabata Y; Endoh M
    J Card Fail; 1995 Mar; 1(2):143-53. PubMed ID: 9420644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aequorin-calcium transients in frog twitch muscle fibres.
    Eusebi F; Miledi R; Takahashi T
    J Physiol; 1983 Jul; 340():91-106. PubMed ID: 6604155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual regulation of myofilament Ca2+ sensitivity by levosimendan in normal and acidotic conditions in aequorin-loaded canine ventricular myocardium.
    Takahashi R; Endoh M
    Br J Pharmacol; 2005 Aug; 145(8):1143-52. PubMed ID: 15951828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction.
    Ferrier GR; Howlett SE
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H1928-44. PubMed ID: 11299192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium handling and sarcoplasmic-reticular protein functions during heart-failure transition in ventricular myocardium from rats with hypertension.
    Yoneda T; Kihara Y; Ohkusa T; Iwanaga Y; Inagaki K; Takeuchi Y; Hayashida W; Ueyama T; Hisamatsu Y; Fujita M; Hatac S; Matsuzaki M; Sasayama S
    Life Sci; 2001 Nov; 70(2):143-57. PubMed ID: 11787940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium.
    Wier WG; Yue DT
    J Physiol; 1986 Jul; 376():507-30. PubMed ID: 2432238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a novel cardiotonic agent (+-)-6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy]-2(1H)-quinolino ne (OPC-18790) on contractile force, cyclic AMP level, and aequorin light transients in dog ventricular myocardium.
    Endoh M; Kawabata Y; Katano Y; Norota I
    J Cardiovasc Pharmacol; 1994 May; 23(5):723-30. PubMed ID: 7521454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers.
    Marban E; Wier WG
    Circ Res; 1985 Jan; 56(1):133-8. PubMed ID: 2578335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle.
    Allen DG; Orchard CH
    J Physiol; 1983 Jun; 339():107-22. PubMed ID: 6887018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transmembrane calcium movements and excitation-contraction coupling in myocardial cells.
    Vassort G; Horackova M; Mongo K; Roulet MJ; Ventura-clapier R
    Pathol Biol (Paris); 1979 Jan; 27(1):21-9. PubMed ID: 379750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.