BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 38383444)

  • 1. Reinvent 4: Modern AI-driven generative molecule design.
    Loeffler HH; He J; Tibo A; Janet JP; Voronov A; Mervin LH; Engkvist O
    J Cheminform; 2024 Feb; 16(1):20. PubMed ID: 38383444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DockStream: a docking wrapper to enhance de novo molecular design.
    Guo J; Janet JP; Bauer MR; Nittinger E; Giblin KA; Papadopoulos K; Voronov A; Patronov A; Engkvist O; Margreitter C
    J Cheminform; 2021 Nov; 13(1):89. PubMed ID: 34789335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REINVENT 2.0: An AI Tool for De Novo Drug Design.
    Blaschke T; Arús-Pous J; Chen H; Margreitter C; Tyrchan C; Engkvist O; Papadopoulos K; Patronov A
    J Chem Inf Model; 2020 Dec; 60(12):5918-5922. PubMed ID: 33118816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Has Artificial Intelligence Impacted Drug Discovery?
    Patronov A; Papadopoulos K; Engkvist O
    Methods Mol Biol; 2022; 2390():153-176. PubMed ID: 34731468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Icolos: a workflow manager for structure-based post-processing of de novo generated small molecules.
    Moore JH; Bauer MR; Guo J; Patronov A; Engkvist O; Margreitter C
    Bioinformatics; 2022 Oct; 38(21):4951-4952. PubMed ID: 36073898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPro: generative AI-empowered toolkit for promoter design.
    Wang H; Du Q; Wang Y; Xu H; Wei Z; Wang X
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38429953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating synthetic accessibility with AI-based generative drug design.
    Parrot M; Tajmouati H; da Silva VBR; Atwood BR; Fourcade R; Gaston-Mathé Y; Do Huu N; Perron Q
    J Cheminform; 2023 Sep; 15(1):83. PubMed ID: 37726842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AutoMolDesigner for Antibiotic Discovery: An AI-Based Open-Source Software for Automated Design of Small-Molecule Antibiotics.
    Shen T; Guo J; Han Z; Zhang G; Liu Q; Si X; Wang D; Wu S; Xia J
    J Chem Inf Model; 2024 Feb; 64(3):575-583. PubMed ID: 38265916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Commoditization of AI for Molecule Design.
    Urbina F; Ekins S
    Artif Intell Life Sci; 2022 Dec; 2():. PubMed ID: 36211981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application scenario-oriented molecule generation platform developed for drug discovery.
    Zheng L; Shi F; Peng C; Xu M; Fan F; Li Y; Zhang L; Du J; Wang Z; Lin Z; Sun Y; Deng C; Duan X; Wei L; Zhao C; Fang L; Zhang P; Ma S; Lai L; Yang M
    Methods; 2024 Feb; 222():112-121. PubMed ID: 38215898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Applied to Ligand-Based De Novo Drug Design.
    Palazzesi F; Pozzan A
    Methods Mol Biol; 2022; 2390():273-299. PubMed ID: 34731474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.