BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38383663)

  • 1. Attenuated huntingtin gene CAG nucleotide repeat size in individuals with Lynch syndrome.
    Dalene Skarping K; Arning L; Petersén Å; Nguyen HP; Gebre-Medhin S
    Sci Rep; 2024 Feb; 14(1):4300. PubMed ID: 38383663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes.
    Ciosi M; Maxwell A; Cumming SA; Hensman Moss DJ; Alshammari AM; Flower MD; Durr A; Leavitt BR; Roos RAC; ; ; Holmans P; Jones L; Langbehn DR; Kwak S; Tabrizi SJ; Monckton DG
    EBioMedicine; 2019 Oct; 48():568-580. PubMed ID: 31607598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease.
    Goold R; Hamilton J; Menneteau T; Flower M; Bunting EL; Aldous SG; Porro A; Vicente JR; Allen ND; Wilkinson H; Bates GP; Sartori AA; Thalassinos K; Balmus G; Tabrizi SJ
    Cell Rep; 2021 Aug; 36(9):109649. PubMed ID: 34469738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.
    Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC
    PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches to Sequence the HTT CAG Repeat Expansion and Quantify Repeat Length Variation.
    Ciosi M; Cumming SA; Chatzi A; Larson E; Tottey W; Lomeikaite V; Hamilton G; Wheeler VC; Pinto RM; Kwak S; Morton AJ; Monckton DG
    J Huntingtons Dis; 2021; 10(1):53-74. PubMed ID: 33579864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
    Pinto RM; Dragileva E; Kirby A; Lloret A; Lopez E; St Claire J; Panigrahi GB; Hou C; Holloway K; Gillis T; Guide JR; Cohen PE; Li GM; Pearson CE; Daly MJ; Wheeler VC
    PLoS Genet; 2013 Oct; 9(10):e1003930. PubMed ID: 24204323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels.
    Shin A; Shin B; Shin JW; Kim KH; Atwal RS; Hope JM; Gillis T; Leszyk JD; Shaffer SA; Lee R; Kwak S; MacDonald ME; Gusella JF; Seong IS; Lee JM
    Hum Mol Genet; 2017 Apr; 26(7):1258-1267. PubMed ID: 28165127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Triplet-Primed PCR Assay to Detect the Full Range of Trinucleotide CAG Repeats in the Huntingtin Gene (
    De Luca A; Morella A; Consoli F; Fanelli S; Thibert JR; Statt S; Latham GJ; Squitieri F
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Huntingtin gene CAG repeat size affects autism risk: Family-based and case-control association study.
    Piras IS; Picinelli C; Iennaco R; Baccarin M; Castronovo P; Tomaiuolo P; Cucinotta F; Ricciardello A; Turriziani L; Nanetti L; Mariotti C; Gellera C; Lintas C; Sacco R; Zuccato C; Cattaneo E; Persico AM
    Am J Med Genet B Neuropsychiatr Genet; 2020 Sep; 183(6):341-351. PubMed ID: 32652810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Detection and Sizing of the HTT CAG Repeat Expansion in Huntington Disease Using an Improved Triplet-Primed PCR Assay.
    Zhao M; Lee CG; Law HY; Chong SS
    Neurodegener Dis; 2016; 16(5-6):348-51. PubMed ID: 27207688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate and Expanded HTT Alleles and the Risk for α-Synucleinopathies.
    Pérez-Oliveira S; Álvarez I; Rosas I; Menendez-González M; Blázquez-Estrada M; Aguilar M; Corte D; Buongiorno M; Molina-Porcel L; Aldecoa I; Martí MJ; Sánchez-Juan P; Infante J; González-Aramburu I; García-González P; Rosende-Roca M; Boada M; Ruiz A; Periñán MT; Macías-García D; Muñoz-Delgado L; Gómez-Garre P; Mir P; Clarimón J; Lleo A; Alcolea D; De la Casa-Fages B; Duarte I; Álvarez V; Pastor P
    Mov Disord; 2022 Sep; 37(9):1841-1849. PubMed ID: 35852957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of HTT CAG repeat expansion among healthy individuals and patients with chorea in Korea.
    Kim R; Seong MW; Oh B; Shin HS; Lee JS; Park S; Jang M; Jeon B; Kim HJ; Lee JY
    Parkinsonism Relat Disord; 2024 Jan; 118():105930. PubMed ID: 37992538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a predisposing background for CAG expansion leading to HTT mutation in a Chinese population.
    Ma M; Yang Y; Shang H; Su D; Zhang H; Ma Y; Liu Y; Tao D; Zhang S
    J Neurol Sci; 2010 Nov; 298(1-2):57-60. PubMed ID: 20864123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parent-of-origin differences of mutant HTT CAG repeat instability in Huntington's disease.
    Aziz NA; van Belzen MJ; Coops ID; Belfroid RD; Roos RA
    Eur J Med Genet; 2011; 54(4):e413-8. PubMed ID: 21540131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
    Goold R; Flower M; Moss DH; Medway C; Wood-Kaczmar A; Andre R; Farshim P; Bates GP; Holmans P; Jones L; Tabrizi SJ
    Hum Mol Genet; 2019 Feb; 28(4):650-661. PubMed ID: 30358836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal range CAG repeat size variations in the HTT gene are associated with an adverse lipoprotein profile partially mediated by body mass index.
    Faquih TO; Aziz NA; Gardiner SL; Li-Gao R; de Mutsert R; Milaneschi Y; Trompet S; Jukema JW; Rosendaal FR; van Hylckama Vlieg A; van Dijk KW; Mook-Kanamori DO
    Hum Mol Genet; 2023 May; 32(10):1741-1752. PubMed ID: 36715614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease.
    Wright GEB; Collins JA; Kay C; McDonald C; Dolzhenko E; Xia Q; Bečanović K; Drögemöller BI; Semaka A; Nguyen CM; Trost B; Richards F; Bijlsma EK; Squitieri F; Ross CJD; Scherer SW; Eberle MA; Yuen RKC; Hayden MR
    Am J Hum Genet; 2019 Jun; 104(6):1116-1126. PubMed ID: 31104771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.
    Mariani LL; Tesson C; Charles P; Cazeneuve C; Hahn V; Youssov K; Freeman L; Grabli D; Roze E; Noël S; Peuvion JN; Bachoud-Levi AC; Brice A; Stevanin G; Durr A
    JAMA Neurol; 2016 Sep; 73(9):1105-14. PubMed ID: 27400454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical phenotype in carriers of intermediate alleles in the huntingtin gene.
    Savitt D; Jankovic J
    J Neurol Sci; 2019 Jul; 402():57-61. PubMed ID: 31103960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.