These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38383801)

  • 1. Multilevel modeling in single-case studies with zero-inflated and overdispersed count data.
    Li H; Luo W; Baek E
    Behav Res Methods; 2024 Apr; 56(4):2765-2781. PubMed ID: 38383801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation.
    Li H
    Behav Res Methods; 2024 Oct; 56(7):7963-7984. PubMed ID: 38987450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of statistical methods for modeling count data with an application to hospital length of stay.
    Fernandez GA; Vatcheva KP
    BMC Med Res Methodol; 2022 Aug; 22(1):211. PubMed ID: 35927612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models for analyzing zero-inflated and overdispersed count data: an application to cigarette and marijuana use.
    Pittman B; Buta E; Krishnan-Sarin S; O'Malley SS; Liss T; Gueorguieva R
    Nicotine Tob Res; 2018 Apr; 22(8):1390-8. PubMed ID: 29912423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric models for multilevel overdispersed count data with extra zeros.
    Mahmoodi M; Moghimbeigi A; Mohammad K; Faradmal J
    Stat Methods Med Res; 2018 Apr; 27(4):1187-1201. PubMed ID: 27389670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation study of the performance of statistical models for count outcomes with excessive zeros.
    Zhou Z; Li D; Huh D; Xie M; Mun EY
    Stat Med; 2024 Oct; 43(24):4752-4767. PubMed ID: 39193779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GEE-type approach to untangle structural and random zeros in predictors.
    Ye P; Tang W; He J; He H
    Stat Methods Med Res; 2019 Dec; 28(12):3683-3696. PubMed ID: 30472921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.
    Kassahun W; Neyens T; Molenberghs G; Faes C; Verbeke G
    Stat Med; 2014 Nov; 33(25):4402-19. PubMed ID: 24957791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial.
    Lee KH; Pedroza C; Avritscher EBC; Mosquera RA; Tyson JE
    Trials; 2023 Sep; 24(1):613. PubMed ID: 37752579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data.
    Bai W; Dong M; Li L; Feng C; Xu W
    BMC Bioinformatics; 2021 Nov; 22(1):564. PubMed ID: 34823466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Untangle the Structural and Random Zeros in Statistical Modelings.
    Tang W; He H; Wang WJ; Chen DG
    J Appl Stat; 2018; 45(9):1714-1733. PubMed ID: 30906098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A score test for overdispersion in zero-inflated poisson mixed regression model.
    Xiang L; Lee AH; Yau KK; McLachlan GJ
    Stat Med; 2007 Mar; 26(7):1608-22. PubMed ID: 16794991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginalized zero-inflated negative binomial regression with application to dental caries.
    Preisser JS; Das K; Long DL; Divaris K
    Stat Med; 2016 May; 35(10):1722-35. PubMed ID: 26568034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data.
    Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD
    J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical modelling of falls count data with excess zeros.
    Khan A; Ullah S; Nitz J
    Inj Prev; 2011 Aug; 17(4):266-70. PubMed ID: 21653652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution-free model selection for longitudinal zero-inflated count data with missing responses and covariates.
    Chen CS; Shen CW
    Stat Med; 2022 Jul; 41(16):3180-3198. PubMed ID: 35429179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing hospitalization data: potential limitations of Poisson regression.
    Weaver CG; Ravani P; Oliver MJ; Austin PC; Quinn RR
    Nephrol Dial Transplant; 2015 Aug; 30(8):1244-9. PubMed ID: 25813274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial.
    Hu MC; Pavlicova M; Nunes EV
    Am J Drug Alcohol Abuse; 2011 Sep; 37(5):367-75. PubMed ID: 21854279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear mixed-effects modeling of longitudinal count data: Bayesian inference about median counts based on the marginal zero-inflated discrete Weibull distribution.
    Burger DA; Lesaffre E
    Stat Med; 2021 Oct; 40(23):5078-5095. PubMed ID: 34155664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.