These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38383905)
1. Identification of vagal afferent nerve endings in the mouse colon and their spatial relationship with enterochromaffin cells. Spencer NJ; Kyloh MA; Travis L; Hibberd TJ Cell Tissue Res; 2024 Jun; 396(3):313-327. PubMed ID: 38383905 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms underlying the gut-brain communication: How enterochromaffin (EC) cells activate vagal afferent nerve endings in the small intestine. Spencer NJ; Kyloh MA; Travis L; Hibberd TJ J Comp Neurol; 2024 Apr; 532(4):e25613. PubMed ID: 38625817 [TBL] [Abstract][Full Text] [Related]
3. The gut-brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon. Dodds KN; Travis L; Kyloh MA; Jones LA; Keating DJ; Spencer NJ Am J Physiol Gastrointest Liver Physiol; 2022 May; 322(5):G523-G533. PubMed ID: 35293258 [TBL] [Abstract][Full Text] [Related]
4. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. Zhu JX; Zhu XY; Owyang C; Li Y J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274 [TBL] [Abstract][Full Text] [Related]
6. Sensory nerve endings arising from single spinal afferent neurons that innervate both circular muscle and myenteric ganglia in mouse colon: colon-brain axis. Spencer NJ; Kyloh MA; Travis L; Dodds KN Cell Tissue Res; 2020 Jul; 381(1):25-34. PubMed ID: 32215722 [TBL] [Abstract][Full Text] [Related]
7. Sensory signal transduction in the vagal primary afferent neurons. Li Y Curr Med Chem; 2007; 14(24):2554-63. PubMed ID: 17979708 [TBL] [Abstract][Full Text] [Related]
8. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus. Yu S; Ru F; Ouyang A; Kollarik M Neurogastroenterol Motil; 2008 Sep; 20(9):1042-50. PubMed ID: 18482251 [TBL] [Abstract][Full Text] [Related]
11. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Berthoud HR; Kressel M; Raybould HE; Neuhuber WL Anat Embryol (Berl); 1995 Mar; 191(3):203-12. PubMed ID: 7771683 [TBL] [Abstract][Full Text] [Related]
12. Identification of spinal afferent nerve endings in the colonic mucosa and submucosa that communicate directly with the spinal cord: The gut-brain axis. Spencer NJ; Kyloh MA; Travis L; Dodds KN J Comp Neurol; 2020 Jul; 528(10):1742-1753. PubMed ID: 31909835 [TBL] [Abstract][Full Text] [Related]
13. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. Spencer NJ; Kyloh M; Beckett EA; Brookes S; Hibberd T J Comp Neurol; 2016 Oct; 524(15):3064-83. PubMed ID: 27019197 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. Berthoud HR; Jedrzejewska A; Powley TL J Comp Neurol; 1990 Nov; 301(1):65-79. PubMed ID: 1706359 [TBL] [Abstract][Full Text] [Related]
15. Diet-induced adaptation of vagal afferent function. Kentish S; Li H; Philp LK; O'Donnell TA; Isaacs NJ; Young RL; Wittert GA; Blackshaw LA; Page AJ J Physiol; 2012 Jan; 590(1):209-21. PubMed ID: 22063628 [TBL] [Abstract][Full Text] [Related]
16. A novel role for the extracellular matrix glycoprotein-Tenascin-X in gastric function. Aktar R; Peiris M; Fikree A; Eaton S; Kritas S; Kentish SJ; Araujo EJA; Bacarin C; Page AJ; Voermans NC; Aziz Q; Blackshaw LA J Physiol; 2019 Mar; 597(6):1503-1515. PubMed ID: 30605228 [TBL] [Abstract][Full Text] [Related]
20. The neural control of the serotonin content in mammalian enterochromaffin cells. Pettersson G Acta Physiol Scand Suppl; 1979; 470():1-30. PubMed ID: 229694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]