BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 38383928)

  • 1. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil.
    Mathur J; Panwar R
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of Nitrogen on the Phytoremediation of Cd-PAHs Co-contaminated Dumpsite Soil by Alfalfa (
    Li YJ; Ma JW; Li YQ; Xiao C; Shen XY; Xiu Y; Chen JJ
    Huan Jing Ke Xue; 2022 Oct; 43(10):4779-4788. PubMed ID: 36224163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).
    Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A
    Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in
    Panwar R; Mathur J
    Int J Phytoremediation; 2023; 25(13):1743-1761. PubMed ID: 36935611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the Suitability of
    Steliga T; Kluk D
    Toxics; 2021 Jun; 9(7):. PubMed ID: 34202316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of soil polluted with HMW-PAHs by alfalfa or brome in combination with fungi and starch.
    Shi W; Guo Y; Ning G; Li C; Li Y; Ren Y; Zhao O; Yang Z
    J Hazard Mater; 2018 Oct; 360():115-121. PubMed ID: 30098530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Industrial hemp (Cannabis sativa L.)-a valuable alternative crop for growing in agricultural soils contaminated with heavy metals.
    Flajšman M; Košmelj K; Grčman H; Ačko DK; Zupan M
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115414-115429. PubMed ID: 37884708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils.
    Cao X; Cui X; Xie M; Zhao R; Xu L; Ni S; Cui Z
    J Hazard Mater; 2022 Mar; 426():128096. PubMed ID: 34952500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar.
    Alves WS; Manoel EA; Santos NS; Nunes RO; Domiciano GC; Soares MR
    Int J Phytoremediation; 2018 Jul; 20(8):747-755. PubMed ID: 29775101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential.
    Agnello AC; Huguenot D; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2016 May; 23(9):9215-26. PubMed ID: 26838038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil.
    Li L; Zhu P; Wang X; Zhang Z
    BMC Biotechnol; 2020 Apr; 20(1):20. PubMed ID: 32345267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.).
    Fan S; Li P; Gong Z; Ren W; He N
    Chemosphere; 2008 Apr; 71(8):1593-8. PubMed ID: 18082869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of a Fire at an Illegal Landfill in Southern Poland on the Formation of Toxic Compounds and Their Impact on the Natural Environment.
    Rykała W; Fabiańska MJ; Dąbrowska D
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytotreatment of sewage sludge contaminated by heavy metals and PAHs by co-planting Sedum alfredii and Alocasia marorrhiza.
    Qiu JR; Guo XF; Cai QY; Liu W; Zhang MW; Wei ZB; Wu QT
    Int J Phytoremediation; 2014; 16(1):1-13. PubMed ID: 24912211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.
    Thavamani P; Megharaj M; Naidu R
    Environ Monit Assess; 2012 Jun; 184(6):3875-85. PubMed ID: 21789533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.
    Gutiérrez-Ginés MJ; Hernández AJ; Pérez-Leblic MI; Pastor J; Vangronsveld J
    J Environ Manage; 2014 Oct; 143():197-207. PubMed ID: 24912107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.