These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38383986)
1. Mind your marker: the effect of common auxotrophic markers on complex traits in yeast. Kaplan K; Levkovich SA; DeRowe Y; Gazit E; Laor Bar-Yosef D FEBS J; 2024 May; 291(10):2209-2220. PubMed ID: 38383986 [TBL] [Abstract][Full Text] [Related]
2. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. Swinnen S; Goovaerts A; Schaerlaekens K; Dumortier F; Verdyck P; Souvereyns K; Van Zeebroeck G; Foulquié-Moreno MR; Thevelein JM Eukaryot Cell; 2015 Sep; 14(9):884-97. PubMed ID: 26116212 [TBL] [Abstract][Full Text] [Related]
3. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Ding J; Bierma J; Smith MR; Poliner E; Wolfe C; Hadduck AN; Zara S; Jirikovic M; van Zee K; Penner MH; Patton-Vogt J; Bakalinsky AT Appl Microbiol Biotechnol; 2013 Aug; 97(16):7405-16. PubMed ID: 23828602 [TBL] [Abstract][Full Text] [Related]
4. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Zhang GC; Kong II; Kim H; Liu JJ; Cate JH; Jin YS Appl Environ Microbiol; 2014 Dec; 80(24):7694-701. PubMed ID: 25281382 [TBL] [Abstract][Full Text] [Related]
6. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. Geng P; Zhang L; Shi GY World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910 [TBL] [Abstract][Full Text] [Related]
7. Auxotrophs compromise cell growth and fatty acid production in Saccharomyces cerevisiae. Yan C; Gao N; Cao X; Yao L; Zhou YJ; Gao J Biotechnol J; 2023 Apr; 18(4):e2200510. PubMed ID: 36689702 [TBL] [Abstract][Full Text] [Related]
8. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. Zheng DQ; Wu XC; Wang PM; Chi XQ; Tao XL; Li P; Jiang XH; Zhao YH J Ind Microbiol Biotechnol; 2011 Mar; 38(3):415-22. PubMed ID: 20652356 [TBL] [Abstract][Full Text] [Related]
9. Response to leucine in Schizosaccharomyces pombe (fission yeast). Ohtsuka H; Shimasaki T; Aiba H FEMS Yeast Res; 2022 Apr; 22(1):. PubMed ID: 35325114 [TBL] [Abstract][Full Text] [Related]
10. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related]
11. Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. Cohen R; Engelberg D FEMS Microbiol Lett; 2007 Aug; 273(2):239-43. PubMed ID: 17573937 [TBL] [Abstract][Full Text] [Related]
12. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Acton E; Lee AH; Zhao PJ; Flibotte S; Neira M; Sinha S; Chiang J; Flaherty P; Nislow C; Giaever G Open Biol; 2017 Jun; 7(6):. PubMed ID: 28592509 [TBL] [Abstract][Full Text] [Related]
13. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Luo Z; Wang L; Wang Y; Zhang W; Guo Y; Shen Y; Jiang L; Wu Q; Zhang C; Cai Y; Dai J Nat Commun; 2018 May; 9(1):1930. PubMed ID: 29789541 [TBL] [Abstract][Full Text] [Related]
14. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Mira NP; Palma M; Guerreiro JF; Sá-Correia I Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990 [TBL] [Abstract][Full Text] [Related]
16. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1beta in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy. Paciello L; de Alteriis E; Mazzoni C; Palermo V; Zueco J; Parascandola P Microb Cell Fact; 2009 Dec; 8():70. PubMed ID: 20042083 [TBL] [Abstract][Full Text] [Related]
17. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Zhang MM; Zhao XQ; Cheng C; Bai FW Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519 [TBL] [Abstract][Full Text] [Related]
18. High-resolution yeast quiescence profiling in human-like media reveals complex influences of auxotrophy and nutrient availability. Santos SM; Laflin S; Broadway A; Burnet C; Hartheimer J; Rodgers J; Smith DL; Hartman JL Geroscience; 2021 Apr; 43(2):941-964. PubMed ID: 33015753 [TBL] [Abstract][Full Text] [Related]
19. Natural Variation in Sirr A; Scott AC; Cromie GA; Ludlow CL; Ahyong V; Morgan TS; Gilbert T; Dudley AM G3 (Bethesda); 2018 Jan; 8(1):239-251. PubMed ID: 29138237 [TBL] [Abstract][Full Text] [Related]
20. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Sakihama Y; Hasunuma T; Kondo A J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]