These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38384286)

  • 1. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network.
    Luo H; Zhu C; Wang J; Zhang G; Luo J; Yan C
    Front Pharmacol; 2024; 15():1337764. PubMed ID: 38384286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction.
    Zhang ML; Zhao BW; Su XR; He YZ; Yang Y; Hu L
    BMC Bioinformatics; 2022 Dec; 23(1):516. PubMed ID: 36456957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
    He S; Yun L; Yi H
    BMC Bioinformatics; 2024 Feb; 25(1):79. PubMed ID: 38378479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning.
    Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L
    Front Genet; 2021; 12():657182. PubMed ID: 34054920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images.
    Gao Z; Lu Z; Wang J; Ying S; Shi J
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):3163-3173. PubMed ID: 35196251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction.
    Wang Y; Song J; Dai Q; Duan X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3146-3157. PubMed ID: 38294927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction.
    Jiang H; Cao P; Xu M; Yang J; Zaiane O
    Comput Biol Med; 2020 Dec; 127():104096. PubMed ID: 33166800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DAHNGC: A Graph Convolution Model for Drug-Disease Association Prediction by Using Heterogeneous Network.
    Zhong J; Cui P; Zhu Y; Xiao Q; Qu Z
    J Comput Biol; 2023 Sep; 30(9):1019-1033. PubMed ID: 37702623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Drug Repositioning Approach Based on Collaborative Metric Learning.
    Luo H; Wang J; Yan C; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):463-471. PubMed ID: 31283509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.