These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38384308)

  • 1. Machine learning descriptors in materials chemistry used in multiple experimentally validated studies: Oliynyk elemental property dataset.
    Lee S; Chen C; Garcia G; Oliynyk A
    Data Brief; 2024 Apr; 53():110178. PubMed ID: 38384308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.
    Jalem R; Nakayama M; Noda Y; Le T; Takeuchi I; Tateyama Y; Yamazaki H
    Sci Technol Adv Mater; 2018; 19(1):231-242. PubMed ID: 29707064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Blending: An Approach toward Generalized Machine Learning Models for Property Prediction.
    Satsangi S; Mishra A; Singh AK
    ACS Phys Chem Au; 2022 Jan; 2(1):16-22. PubMed ID: 36855577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches.
    Oliynyk AO; Mar A
    Acc Chem Res; 2018 Jan; 51(1):59-68. PubMed ID: 29244479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing material property prediction: using physics-informed machine learning models for viscosity.
    Chew AK; Sender M; Kaplan Z; Chandrasekaran A; Chief Elk J; Browning AR; Kwak HS; Halls MD; Afzal MAF
    J Cheminform; 2024 Mar; 16(1):31. PubMed ID: 38486289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes.
    Wu YJ; Tanaka T; Komori T; Fujii M; Mizuno H; Itoh S; Takada T; Fujita E; Xu Y
    Sci Technol Adv Mater; 2020 Oct; 21(1):712-725. PubMed ID: 33209090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal machine learning framework for defect predictions in zinc blende semiconductors.
    Mannodi-Kanakkithodi A; Xiang X; Jacoby L; Biegaj R; Dunham ST; Gamelin DR; Chan MKY
    Patterns (N Y); 2022 Mar; 3(3):100450. PubMed ID: 35510195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.
    Murat M; Chang SW; Abu A; Yap HJ; Yong KT
    PeerJ; 2017; 5():e3792. PubMed ID: 28924506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descriptor engineering in machine learning regression of electronic structure properties for 2D materials.
    Dau MT; Al Khalfioui M; Michon A; Reserbat-Plantey A; Vézian S; Boucaud P
    Sci Rep; 2023 Apr; 13(1):5426. PubMed ID: 37012307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of thermophysical property of hybrid nanofluids for solar Thermal applications: Implementation of novel Optimizable Gaussian Process regression (O-GPR) approach for Viscosity prediction.
    Adun H; Wole-Osho I; Okonkwo EC; Ruwa T; Agwa T; Onochie K; Ukwu H; Bamisile O; Dagbasi M
    Neural Comput Appl; 2022; 34(13):11233-11254. PubMed ID: 35291505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning.
    Gharakhanyan V; Wirth LJ; Garrido Torres JA; Eisenberg E; Wang T; Trinkle DR; Chatterjee S; Urban A
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38804486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning transition temperatures from 2D structure.
    Sifain AE; Rice BM; Yalkowsky SH; Barnes BC
    J Mol Graph Model; 2021 Jun; 105():107848. PubMed ID: 33667863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons.
    Teixeira AL; Leal JP; Falcao AO
    J Cheminform; 2013 Feb; 5(1):9. PubMed ID: 23399299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable Machine Learning in Solid-State Chemistry, with Applications to Perovskites, Spinels, and Rare-Earth Intermetallics: Finding Descriptors Using Decision Trees.
    Selvaratnam B; Oliynyk AO; Mar A
    Inorg Chem; 2023 Jul; 62(28):10865-10875. PubMed ID: 37390482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors.
    Huo S; Zhang S; Wu Q; Zhang X
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal fragment descriptors for predicting properties of inorganic crystals.
    Isayev O; Oses C; Toher C; Gossett E; Curtarolo S; Tropsha A
    Nat Commun; 2017 Jun; 8():15679. PubMed ID: 28580961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Band Gaps of Inorganic Solids by Machine Learning.
    Zhuo Y; Mansouri Tehrani A; Brgoch J
    J Phys Chem Lett; 2018 Apr; 9(7):1668-1673. PubMed ID: 29532658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.