These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38384464)

  • 21. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy.
    Shi Y; Zhang L; Teng J; Miao W
    Mol Med Rep; 2018 Apr; 17(4):5125-5131. PubMed ID: 29393419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.
    Chen Y; Huang XJ; Yu N; Xie Y; Zhang K; Wen F; Liu H; Di Q
    PLoS One; 2015; 10(10):e0140918. PubMed ID: 26485677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.
    Ma F; Kouzoukas DE; Meyer-Siegler KL; Westlund KN; Hunt DE; Vera PL
    BMC Physiol; 2017 May; 17(1):6. PubMed ID: 28545586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antinociception induced by artemisinin nanocapsule in a model of postoperative pain via spinal TLR4 inhibition.
    Elisei LMS; Moraes TR; Malta IH; Charlie-Silva I; Sousa IMO; Veras FP; Foglio MA; Fraceto LF; Galdino G
    Inflammopharmacology; 2020 Dec; 28(6):1537-1551. PubMed ID: 32939611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk.
    Sekiguchi F; Domoto R; Nakashima K; Yamasoba D; Yamanishi H; Tsubota M; Wake H; Nishibori M; Kawabata A
    Neuropharmacology; 2018 Oct; 141():201-213. PubMed ID: 30179591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway.
    Hu Z; Xiao M; Cai H; Li W; Fang W; Long X
    J Cell Mol Med; 2022 Feb; 26(3):925-936. PubMed ID: 34953035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-mobility group box 1 inhibits HCO(3)(-) absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway.
    Good DW; George T; Watts BA
    Am J Physiol Renal Physiol; 2015 Oct; 309(8):F720-30. PubMed ID: 26180239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HMGB1 and TLR4 mediate skeletal muscle recovery in a murine model of hindlimb ischemia.
    Sachdev U; Cui X; Tzeng E
    J Vasc Surg; 2013 Aug; 58(2):460-9. PubMed ID: 23414695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Canagliflozin attenuates thioacetamide-induced liver injury through modulation of HMGB1/RAGE/TLR4 signaling pathways.
    Abdelmageed ME; Abdelrahman RS
    Life Sci; 2023 Jun; 322():121654. PubMed ID: 37023955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preventive Intrathecal Injection of Bupivacaine Alleviated Microglia Activation and Neuropathic Pain in a Rat Model of Chronic Constriction Injury.
    Wu CC; Chang CY; Tzeng CY; Huang JH; Hung CJ; Chen WY; Liao SL; Kuan YH; Chen CJ
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PAG neuronal NMDARs activation mediated morphine-induced hyperalgesia by HMGB1-TLR4 dependent microglial inflammation.
    Mo J; Lu Z; Peng J; Li XP; Lan L; Wang H; Peng Y
    J Psychiatr Res; 2023 Aug; 164():150-161. PubMed ID: 37352811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats.
    Kuang X; Huang Y; Gu HF; Zu XY; Zou WY; Song ZB; Guo QL
    Eur J Pharmacol; 2012 Feb; 676(1-3):51-6. PubMed ID: 22173123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [κ-opioid receptor is involved in electroacupuncture analgesia via inhibition of spinal microglial Toll-like receptor 4 in neuropathic pain rats].
    Gao YH; Wang JY; Han YJ; Liu JL
    Zhen Ci Yan Jiu; 2022 Feb; 47(2):95-100. PubMed ID: 35218617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells.
    Ojo OO; Ryu MH; Jha A; Unruh H; Halayko AJ
    Am J Physiol Lung Cell Mol Physiol; 2015 Dec; 309(11):L1354-66. PubMed ID: 26432865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway.
    Shah BS; Burt KG; Jacobsen T; Fernandes TD; Alipui DO; Weber KT; Levine M; Chavan SS; Yang H; Tracey KJ; Chahine NO
    J Orthop Res; 2019 Jan; 37(1):220-231. PubMed ID: 30273982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia.
    Zhang S; Hu L; Jiang J; Li H; Wu Q; Ooi K; Wang J; Feng Y; Zhu D; Xia C
    J Neuroinflammation; 2020 Jan; 17(1):15. PubMed ID: 31924219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Mobility Group Box 1 Protein Signaling in Painful Diabetic Neuropathy.
    Thakur V; Sadanandan J; Chattopadhyay M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.
    Franklin TC; Wohleb ES; Zhang Y; Fogaça M; Hare B; Duman RS
    Biol Psychiatry; 2018 Jan; 83(1):50-60. PubMed ID: 28882317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ectodomain Shedding of RAGE and TLR4 as a Negative Feedback Regulation in High-Mobility Group Box 1-Activated Aortic Endothelial Cells.
    Yang WS; Kim JJ; Lee MJ; Lee EK; Park SK
    Cell Physiol Biochem; 2018; 51(4):1632-1644. PubMed ID: 30497069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal alarmin HMGB1 and the activation of TLR4 lead to chronic stress-induced nociceptive hypersensitivity in rodents.
    Rodríguez-Palma EJ; Velazquez-Lagunas I; Salinas-Abarca AB; Vidal-Cantú GC; Escoto-Rosales MJ; Castañeda-Corral G; Fernández-Guasti A; Granados-Soto V
    Eur J Pharmacol; 2023 Aug; 952():175804. PubMed ID: 37244377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.