BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38384559)

  • 1. A review on MCFC matrix: State-of-the-art, degradation mechanisms and technological improvements.
    Sheikh AA; Bianchi FR; Bove D; Bosio B
    Heliyon; 2024 Feb; 10(4):e25847. PubMed ID: 38384559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.
    Lan R; Tao S
    Sci Adv; 2016 Aug; 2(8):e1600772. PubMed ID: 27540588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proton conductor electrolyte based on molten CsH
    Chen X; Zhang Y; Ribeiorinha P; Li H; Kong X; Boaventura M
    RSC Adv; 2018 Jan; 8(10):5225-5232. PubMed ID: 35542448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel cells for carbon capture applications.
    Abdelkareem MA; Lootah MA; Sayed ET; Wilberforce T; Alawadhi H; Yousef BAA; Olabi AG
    Sci Total Environ; 2021 May; 769():144243. PubMed ID: 33493911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of H2S using molten carbonate at high temperature.
    Kawase M; Otaka M
    Waste Manag; 2013 Dec; 33(12):2706-12. PubMed ID: 24035726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LiAlO2-LiNaCO3 composite electrolyte for solid oxide fuel cells.
    Raza R; Gao Z; Singh T; Singh G; Li S; Zhu B
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5402-7. PubMed ID: 21770195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials Selection and Construction Development for Ensuring the Availability and Durability of the Molten Hydroxide Electrolyte Direct Carbon Fuel Cell (MH-MCFC).
    Kacprzak A; Włodarczyk R
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33086664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production.
    Sadeghi S; Askari IB
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam.
    Komorowska G; Wejrzanowski T; Jamroz J; Jastrzębska A; Wróbel W; Tsai SY; Fung KZ
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Electrolyte-Dependent Carbonate Formation on Gas Diffusion Electrodes for CO
    Cofell ER; Nwabara UO; Bhargava SS; Henckel DE; Kenis PJA
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15132-15142. PubMed ID: 33764731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molten carbonate fuel cells fed with biogas: combating H(2)S.
    Ciccoli R; Cigolotti V; Lo Presti R; Massi E; McPhail SJ; Monteleone G; Moreno A; Naticchioni V; Paoletti C; Simonetti E; Zaza F
    Waste Manag; 2010 Jun; 30(6):1018-24. PubMed ID: 20211554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite materials for thermal energy storage: enhancing performance through microstructures.
    Ge Z; Ye F; Ding Y
    ChemSusChem; 2014 May; 7(5):1318-25. PubMed ID: 24591286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonging the Cycle Life of a Lithium-Air Battery by Alleviating Electrolyte Degradation with a Ceramic-Carbon Composite Cathode.
    Luo Z; Li Y; Liu Z; Pan L; Guan W; Liu P; Wang D
    ChemSusChem; 2019 Nov; 12(22):4962-4967. PubMed ID: 31448537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate.
    Deng B; Tang J; Mao X; Song Y; Zhu H; Xiao W; Wang D
    Environ Sci Technol; 2016 Oct; 50(19):10588-10595. PubMed ID: 27602783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting Kinetics of Molten Carbonate on Carbon.
    Dou Y; Li P; Du K; Wang P; Yin H; Wang D
    Langmuir; 2021 Sep; 37(35):10594-10601. PubMed ID: 34436905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.
    Guo Q; Han Y; Wang H; Xiong S; Li Y; Liu S; Xie K
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41837-41844. PubMed ID: 29131566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Carbons and Fuels: Recent Advances of CO
    Yu A; Ma G; Ren J; Peng P; Li FF
    ChemSusChem; 2020 Dec; 13(23):6229-6245. PubMed ID: 33030250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.