These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38384568)
21. An Investigation on the Hardness of Polylactic Acid Parts Fabricated via Fused Deposition Modeling. Zeng YS; Hsueh MH; Lai CJ; Hsiao TC; Pan CY; Huang WC; Chang CH; Wang SH Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890565 [TBL] [Abstract][Full Text] [Related]
22. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Portoacă AI; Ripeanu RG; Diniță A; Tănase M Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631476 [TBL] [Abstract][Full Text] [Related]
23. Optimisation of Strength Properties of FDM Printed Parts-A Critical Review. Syrlybayev D; Zharylkassyn B; Seisekulova A; Akhmetov M; Perveen A; Talamona D Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069144 [TBL] [Abstract][Full Text] [Related]
24. Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Kargar E; Ghasemi-Ghalebahman A Sci Rep; 2023 Oct; 13(1):18194. PubMed ID: 37875509 [TBL] [Abstract][Full Text] [Related]
25. Characterization and Multiscale Modeling of the Mechanical Properties for FDM-Printed Copper-Reinforced PLA Composites. Özen A; Ganzosch G; Völlmecke C; Auhl D Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080586 [TBL] [Abstract][Full Text] [Related]
26. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Wickramasinghe S; Do T; Tran P Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664374 [TBL] [Abstract][Full Text] [Related]
27. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength. Jackson B; Fouladi K; Eslami B Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458336 [TBL] [Abstract][Full Text] [Related]
28. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process. Kuznetsov VE; Solonin AN; Urzhumtsev OD; Schilling R; Tavitov AG Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966348 [TBL] [Abstract][Full Text] [Related]
29. Impact of Process Variables of Acetone Vapor Jet Drilling on Surface Roughness and Circularity of 3D-Printed ABS Parts: Fabrication and Studies on Thermal, Morphological, and Chemical Characterizations. Juneja S; Chohan JS; Kumar R; Sharma S; Ilyas RA; Asyraf MRM; Razman MR Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406241 [TBL] [Abstract][Full Text] [Related]
30. Parameters Affecting the Mechanical Properties of Three-Dimensional (3D) Printed Carbon Fiber-Reinforced Polylactide Composites. Lee D; Wu GY Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114103 [TBL] [Abstract][Full Text] [Related]
31. Analysis of AM Parameters on Surface Roughness Obtained in PLA Parts Printed with FFF Technology. Buj-Corral I; Sánchez-Casas X; Luis-Pérez CJ Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301141 [TBL] [Abstract][Full Text] [Related]
32. Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodology. Waseem M; Salah B; Habib T; Saleem W; Abas M; Khan R; Ghani U; Siddiqi MUR Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322445 [TBL] [Abstract][Full Text] [Related]
33. Enhancing 3D Printing Copper-PLA Composite Fabrication via Fused Deposition Modeling through Statistical Process Parameter Study. Moradi M; Mehrabi O; Rasoul FA; Mattie AA; Schaber F; Khandan R Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337742 [TBL] [Abstract][Full Text] [Related]
34. Analyzing Surface Roughness Variations in Material Extrusion Additive Manufacturing of Nylon Carbon Fiber Composites. Abas M; Awadh MA; Habib T; Noor S Polymers (Basel); 2023 Sep; 15(17):. PubMed ID: 37688259 [TBL] [Abstract][Full Text] [Related]
35. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Khosravani MR; Berto F; Ayatollahi MR; Reinicke T Sci Rep; 2022 Jan; 12(1):1016. PubMed ID: 35046490 [TBL] [Abstract][Full Text] [Related]
36. Decision Tree Methods for Predicting Surface Roughness in Fused Deposition Modeling Parts. Barrios JM; Romero PE Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31409019 [TBL] [Abstract][Full Text] [Related]
37. The Influence of the Printing Temperature and the Filament Color on the Dimensional Accuracy, Tensile Strength, and Friction Performance of FFF-Printed PLA Specimens. Frunzaverde D; Cojocaru V; Ciubotariu CR; Miclosina CO; Ardeljan DD; Ignat EF; Marginean G Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631861 [TBL] [Abstract][Full Text] [Related]
38. Three-dimensional printing of temporary crowns with polylactic acid polymer using the fused deposition modeling technique: a case series. Kim EK; Park EY; Kang S J Yeungnam Med Sci; 2023 Jul; 40(3):302-307. PubMed ID: 36329660 [TBL] [Abstract][Full Text] [Related]
39. Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts. Abas M; Habib T; Noor S; Salah B; Zimon D Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080740 [TBL] [Abstract][Full Text] [Related]
40. Modeling the Producibility of 3D Printing in Polylactic Acid Using Artificial Neural Networks and Fused Filament Fabrication. Meiabadi MS; Moradi M; Karamimoghadam M; Ardabili S; Bodaghi M; Shokri M; Mosavi AH Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]