These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38384721)

  • 1. Perspectives on emerging dual carbon fiber batteries: advantages, challenges and prospects.
    Liu B; Gan Q; Fu Y
    RSC Adv; 2024 Feb; 14(9):6462-6469. PubMed ID: 38384721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries.
    Roselin LS; Juang RS; Hsieh CT; Sagadevan S; Umar A; Selvin R; Hegazy HH
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new dual-ion battery based on amorphous carbon.
    Wang WA; Huang H; Wang B; Qian C; Li P; Zhou J; Liang Z; Yang C; Guo S
    Sci Bull (Beijing); 2019 Nov; 64(21):1634-1642. PubMed ID: 36659576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na
    Han C; Wang X; Peng J; Xia Q; Chou S; Cheng G; Huang Z; Li W
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All Carbon Dual Ion Batteries.
    Hu Z; Liu Q; Zhang K; Zhou L; Li L; Chen M; Tao Z; Kang YM; Mai L; Chou SL; Chen J; Dou SX
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35978-35983. PubMed ID: 30207686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.
    Song G; Ryu J; Ko S; Bang BM; Choi S; Shin M; Lee SY; Park S
    Chem Asian J; 2016 Jun; 11(11):1711-7. PubMed ID: 27027583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Interlayer Distance and Heteroatom-Doping of Graphite Provide New Insights into the Dual-Ion Storage Mechanism in Dual-Carbon Batteries.
    Hu X; Ma Y; Qu W; Qian J; Li Y; Chen Y; Zhou A; Wang H; Zhang F; Hu Z; Huang Y; Li L; Wu F; Chen R
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202307083. PubMed ID: 37489757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability.
    Ding X; Zhang F; Ji B; Liu Y; Li J; Lee CS; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42294-42300. PubMed ID: 30451488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ultrahigh-Capacity Dual-Ion Battery Based on a Free-Standing Graphite Paper Cathode and Flower-Like Heterojunction Anode of Tin Disulfide and Molybdenum Disulfide.
    Fang Y; Zheng W; Hu T; Xiao H; Li L; Yuan W
    ChemSusChem; 2024 Jan; 17(1):e202301093. PubMed ID: 37620728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review.
    Adekoya D; Qian S; Gu X; Wen W; Li D; Ma J; Zhang S
    Nanomicro Lett; 2020 Oct; 13(1):13. PubMed ID: 34138201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarity-Switchable Symmetric Graphite Batteries with High Energy and High Power Densities.
    Wang G; Wang F; Zhang P; Zhang J; Zhang T; Müllen K; Feng X
    Adv Mater; 2018 Sep; 30(39):e1802949. PubMed ID: 30133877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances of LiCoO
    Ma H; Wang F; Shen M; Tong Y; Wang H; Hu H
    Small Methods; 2024 Jun; 8(6):e2300820. PubMed ID: 38150645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Safe and Sustainable Lithium-Ion-Oxygen Battery based on a Low-Cost Dual-Carbon Electrodes Architecture.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2021 Jun; 33(24):e2100827. PubMed ID: 33963774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confined WS
    Liu Y; Li J; Liu B; Chen Y; Wu Y; Hu X; Zhong G; Yuan J; Chen J; Zhan H; Wen Z
    ChemSusChem; 2023 Feb; 16(4):e202201200. PubMed ID: 35916231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and Solutions for Low-Temperature Lithium-Sulfur Batteries: A Review.
    Liu Y; Qin T; Wang P; Yuan M; Li Q; Feng S
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Potassium-Ion-Based Dual-Ion Battery.
    Ji B; Zhang F; Song X; Tang Y
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics.
    Yadav A; De B; Singh SK; Sinha P; Kar KK
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7974-7980. PubMed ID: 30715836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.