These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 3838483)

  • 1. The effect of pressure on the lipid microviscosity and phase transition of lung surfactant.
    Barkai G; Mashiach S; Goldman B; Kalina M; Shinitzky M
    Biochim Biophys Acta; 1985 Mar; 834(1):103-9. PubMed ID: 3838483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques.
    Kawato S; Kinosita K; Ikegami A
    Biochemistry; 1977 May; 16(11):2319-24. PubMed ID: 577184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microviscosity parameters and protein mobility in biological membranes.
    Shinitzky M; Inbar M
    Biochim Biophys Acta; 1976 Apr; 433(1):133-49. PubMed ID: 1260056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of fetal pulmonary surfactant production on the apparent microviscosity of amniotic fluid measured by fluorescence polarization.
    Petersen LC; Birdi KS
    Scand J Clin Lab Invest; 1983 Feb; 43(1):41-7. PubMed ID: 6688678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles.
    O'Shea PS; Feuerstein-Thelen S; Azzi A
    Biochem J; 1984 Jun; 220(3):795-801. PubMed ID: 6087795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enveloped viruses as model membrane systems: microviscosity of vesicular stomatitis virus and host cell membranes.
    Barenholz Y; Moore NF; Wagner RR
    Biochemistry; 1976 Aug; 15(16):3563-70. PubMed ID: 182211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microviscosity of lipid domains in human serum lipoproteins.
    Jonas A
    Biochim Biophys Acta; 1976 Jan; 486(1):10-22. PubMed ID: 1009129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol.
    Bahri MA; Heyne BJ; Hans P; Seret AE; Mouithys-Mickalad AA; Hoebeke MD
    Biophys Chem; 2005 Apr; 114(1):53-61. PubMed ID: 15792861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
    Picardi MV; Cruz A; Orellana G; Pérez-Gil J
    Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gaseous anaesthetics and inert gases on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine.
    MacNaughtan W; MacDonald AG
    Biochim Biophys Acta; 1980 Apr; 597(2):193-8. PubMed ID: 6892785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence polarization studies of rat intestinal microvillus membranes.
    Schachter D; Shinitzky M
    J Clin Invest; 1977 Mar; 59(3):536-48. PubMed ID: 14174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nonsymmetrical polymethine dyes as fluorescent probes for the study of microviscosity of membrane phospholipid bilayers].
    Volovik ZN; Demchenko AP; Ishchenko AA; Slominskiĭ IuL; Tolmachev AI
    Ukr Biokhim Zh (1978); 1988; 60(3):64-70. PubMed ID: 3413843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amniotic fluid microviscosity determined by fluorescence polarization: methodology and relation to gestational age.
    Stark RI; Blumenfeld TA; George JD; Freda VJ; James LS
    Pediatrics; 1979 Feb; 63(2):213-8. PubMed ID: 440810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.
    Lalchev ZI; Todorov RK; Christova YT; Wilde PJ; Mackie AR; Clark DC
    Biophys J; 1996 Nov; 71(5):2591-601. PubMed ID: 8913597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased fluidity of human platelet membranes during complement-mediated immune platelet injury.
    Shattil SJ; Cines DB; Schreiber AD
    J Clin Invest; 1978 Mar; 61(3):582-9. PubMed ID: 641139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of proteolysis on the state of lipid phase in rat brain synaptosomal membranes.
    Aksentsev SL; Samoilenko SG; Kaler GV; Konev SV
    Arch Biochem Biophys; 1995 Jan; 316(1):47-51. PubMed ID: 7840651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of water on the phase transition of sheep lung surfactant. A possible mechanism for surfactant phase transitions in vivo.
    Teubner JK; Gibson RA; McMurchie EJ
    Biochim Biophys Acta; 1983 Mar; 750(3):521-5. PubMed ID: 6687437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences of microviscosity and lipid composition in normal human T and B lymphocytes.
    Hiramatsu K; Arimori S
    Tokai J Exp Clin Med; 1982 May; 7(3):413-8. PubMed ID: 6289494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fluorescence polarization studies of rat gastric surfactant: effects of aspirin].
    Bommelaer G; Delasalle P; Mosnier P; Motta C
    C R Acad Sci III; 1988; 307(8):475-8. PubMed ID: 3142657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.