These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 3838485)

  • 61. Changes in surface capacitance and conductance parallel to phospholipid membranes associated with phase transition: effects of halothane.
    Yoshida T; Taga K; Okabayashi H; Kamaya H; Ueda I
    Biochim Biophys Acta; 1989 Sep; 984(2):253-6. PubMed ID: 2765552
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage.
    Vandoolaeghe P; Rennie AR; Campbell RA; Nylander T
    Langmuir; 2009 Apr; 25(7):4009-20. PubMed ID: 19714826
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mixing of oxidized and bilayer phospholipids.
    Singh J; Ranganathan R
    Biochim Biophys Acta; 2015 Jul; 1848(7):1472-80. PubMed ID: 25839354
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.
    Nag K; Perez-Gil J; Cruz A; Keough KM
    Biophys J; 1996 Jul; 71(1):246-56. PubMed ID: 8804608
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectroelectrochemical studies of bilayers of phospholipids in gel and liquid state on Au(111) electrode surface.
    Zawisza I; Bin X; Lipkowski J
    Bioelectrochemistry; 2004 Jun; 63(1-2):137-47. PubMed ID: 15110264
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigation of phospholipid area compression induced by calcium-mediated dextran sulfate interaction.
    Huster D; Paasche G; Dietrich U; Zschörnig O; Gutberlet T; Gawrisch K; Arnold K
    Biophys J; 1999 Aug; 77(2):879-87. PubMed ID: 10423433
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phospholipid bilayer free volume analysis employing the thermal ring-closing reaction of merocyanine molecular switches.
    Wohl CJ; Helms MA; Chung JO; Kuciauskas D
    J Phys Chem B; 2006 Nov; 110(45):22796-803. PubMed ID: 17092030
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of air-stable supported lipid monolayers and bilayers.
    Oberts BP; Blanchard GJ
    Langmuir; 2009 Mar; 25(5):2962-70. PubMed ID: 19437768
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling success and failure of Langmuir-Blodgett transfer of phospholipid bilayers to silicon dioxide.
    Osborn TD; Yager P
    Biophys J; 1995 Apr; 68(4):1364-73. PubMed ID: 7540429
    [TBL] [Abstract][Full Text] [Related]  

  • 70. How Ethanolic Disinfectants Disintegrate Coronavirus Model Membranes: A Dissipative Particle Dynamics Simulation Study.
    Zhou T; Wu Z; Das S; Eslami H; Müller-Plathe F
    J Chem Theory Comput; 2022 Apr; 18(4):2597-2615. PubMed ID: 35286098
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N; Monticelli L; Barnoud J; Tieleman DP
    Chem Phys Lipids; 2013 Apr; 169():95-105. PubMed ID: 23415670
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2003 May; 84(5):3079-86. PubMed ID: 12719238
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phospholipid surface density determines the partitioning and permeability of acetic acid in DMPC:cholesterol bilayers.
    Xiang TX; Anderson BD
    J Membr Biol; 1995 Nov; 148(2):157-67. PubMed ID: 8606364
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Surface properties of dioleoyl-sn-glycerol-3-ethylphosphocholine, a cationic phosphatidylcholine transfection agent, alone and in combination with lipids or DNA.
    Macdonald RC; Gorbonos A; Momsen MM; Brockman HL
    Langmuir; 2006 Mar; 22(6):2770-9. PubMed ID: 16519481
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Lateral electrical conductivity of mica-supported lipid bilayer membranes measured by scanning tunneling microscopy.
    Heim M; Cevc G; Guckenberger R; Knapp HF; Wiegräbe W
    Biophys J; 1995 Aug; 69(2):489-97. PubMed ID: 8527663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Kinetics for the subgel phase formation in DPPC/DOPC mixed bilayers.
    Kinoshita M; Ito K; Kato S
    Chem Phys Lipids; 2010 Sep; 163(7):712-9. PubMed ID: 20599851
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length.
    Goto M; Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biochim Biophys Acta; 2008 Apr; 1778(4):1067-78. PubMed ID: 18190778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.