These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38385601)
1. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
2. Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations. Nims C; Johnson JE Geobiology; 2022 Nov; 20(6):743-763. PubMed ID: 36087062 [TBL] [Abstract][Full Text] [Related]
3. Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981 [TBL] [Abstract][Full Text] [Related]
4. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Thompson KJ; Kenward PA; Bauer KW; Warchola T; Gauger T; Martinez R; Simister RL; Michiels CC; Llirós M; Reinhard CT; Kappler A; Konhauser KO; Crowe SA Sci Adv; 2019 Nov; 5(11):eaav2869. PubMed ID: 31807693 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation. Wu W; Swanner ED; Hao L; Zeitvogel F; Obst M; Pan Y; Kappler A FEMS Microbiol Ecol; 2014 Jun; 88(3):503-15. PubMed ID: 24606418 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661 [TBL] [Abstract][Full Text] [Related]
7. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
8. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions. Bassez MP Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010 [TBL] [Abstract][Full Text] [Related]
9. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Maisch M; Wu W; Kappler A; Swanner ED J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924 [TBL] [Abstract][Full Text] [Related]
10. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging. Senn AC; Hug SJ; Kaegi R; Hering JG; Voegelin A Water Res; 2018 Mar; 131():334-345. PubMed ID: 29306667 [TBL] [Abstract][Full Text] [Related]
11. Influence of Dissolved Silicate on Rates of Fe(II) Oxidation. Kinsela AS; Jones AM; Bligh MW; Pham AN; Collins RN; Harrison JJ; Wilsher KL; Payne TE; Waite TD Environ Sci Technol; 2016 Nov; 50(21):11663-11671. PubMed ID: 27704793 [TBL] [Abstract][Full Text] [Related]
12. Products of the iron cycle on the early Earth. Tosca NJ; Jiang CZ; Rasmussen B; Muhling J Free Radic Biol Med; 2019 Aug; 140():138-153. PubMed ID: 31071438 [TBL] [Abstract][Full Text] [Related]
13. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
14. Ferrous Iron Oxidation under Varying pO Chen C; Thompson A Environ Sci Technol; 2018 Jan; 52(2):597-606. PubMed ID: 29192502 [TBL] [Abstract][Full Text] [Related]
15. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339 [TBL] [Abstract][Full Text] [Related]
16. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments. Cooper DC; Picardal FF; Coby AJ Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612 [TBL] [Abstract][Full Text] [Related]
17. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Hansel CM; Benner SG; Fendorf S Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641 [TBL] [Abstract][Full Text] [Related]
18. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707 [TBL] [Abstract][Full Text] [Related]
19. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. Bassez MP Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301 [TBL] [Abstract][Full Text] [Related]
20. Contact with soil impacts ferrihydrite and lepidocrocite transformations during redox cycling in a paddy soil. Schulz K; Notini L; Grigg ARC; Kubeneck LJ; Wisawapipat W; ThomasArrigo LK; Kretzschmar R Environ Sci Process Impacts; 2023 Dec; 25(12):1945-1961. PubMed ID: 37971060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]