BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38385792)

  • 1. 7-Tesla Magnetic Resonance Imaging Scanning in Deep Brain Stimulation for Parkinson's Disease: Improving Visualization of the Dorsolateral Subthalamic Nucleus.
    Verlaat L; Rijks N; Dilai J; Admiraal M; Beudel M; de Bie RMA; van der Zwaag W; Schuurman R; van den Munckhof P; Bot M
    Mov Disord Clin Pract; 2024 Apr; 11(4):373-380. PubMed ID: 38385792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative Contribution of Magnetic Resonance Imaging, Microelectrode Recordings, and Awake Test Stimulation in Final Lead Placement during Deep Brain Stimulation Surgery of the Subthalamic Nucleus in Parkinson's Disease.
    Frequin HL; Bot M; Dilai J; Scholten MN; Postma M; Bour LJ; Contarino MF; de Bie RMA; Schuurman PR; van den Munckhof P
    Stereotact Funct Neurosurg; 2020; 98(2):118-128. PubMed ID: 32131066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility-Weighted MRI Approximates Intraoperative Microelectrode Recording During Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson's Disease.
    Budnick HC; Schneider D; Zauber SE; Witt TC; Gupta K
    World Neurosurg; 2024 Jan; 181():e346-e355. PubMed ID: 37839566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery.
    Shamir RR; Duchin Y; Kim J; Patriat R; Marmor O; Bergman H; Vitek JL; Sapiro G; Bick A; Eliahou R; Eitan R; Israel Z; Harel N
    Neurosurgery; 2019 Mar; 84(3):749-757. PubMed ID: 29800386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Accuracy of the Subthalamic Nucleus in Deep Brain Stimulation Surgery: Comparison Between 3 T T2-Weighted Magnetic Resonance Imaging and Microelectrode Recording Results.
    Nowacki A; Debove I; Fiechter M; Rossi F; Oertel MF; Wiest R; Schüpbach M; Pollo C
    Oper Neurosurg (Hagerstown); 2018 Jul; 15(1):66-71. PubMed ID: 28973406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the Dorsal STN Border Using 7.0-T MRI: A Comparison to Microelectrode Recordings and Lower Field Strength MRI.
    Bot M; Verhagen O; Caan M; Potters WV; Dilai Y; Odekerken VJJ; Dijk JM; de Bie RMA; Schuurman PR; van den Munckhof P
    Stereotact Funct Neurosurg; 2019; 97(3):153-159. PubMed ID: 31430753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson's disease: from preclinical to clinical studies.
    Senova S; Hosomi K; Gurruchaga JM; Gouello G; Ouerchefani N; Beaugendre Y; Lepetit H; Lefaucheur JP; Badin RA; Dauguet J; Jan C; Hantraye P; Brugières P; Palfi S
    J Neurosurg; 2016 Aug; 125(2):472-80. PubMed ID: 26745490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode Recording-Guided Versus Intraoperative Magnetic Resonance Imaging-Guided Subthalamic Nucleus Deep Brain Stimulation Surgery for Parkinson Disease: A 1-Year Follow-Up Study.
    Liu X; Zhang J; Fu K; Gong R; Chen J; Zhang J
    World Neurosurg; 2017 Nov; 107():900-905. PubMed ID: 28842228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease.
    Mathiopoulou V; Rijks N; Caan MWA; Liebrand LC; Ferreira F; de Bie RMA; van den Munckhof P; Schuurman PR; Bot M
    Neuromodulation; 2023 Feb; 26(2):333-339. PubMed ID: 35216874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Microelectrode Recording and Stereotactic Computed Tomography in Verifying Lead Placement During Awake MRI-Guided Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease.
    Vinke RS; Selvaraj AK; Geerlings M; Georgiev D; Sadikov A; Kubben PL; Doorduin J; Praamstra P; Bloem BR; Bartels RHMA; Esselink RAJ
    J Parkinsons Dis; 2022; 12(4):1269-1278. PubMed ID: 35367970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Accuracy of Imaging Guided Targeting with Microelectrode Recoding in Subthalamic Nucleus for Parkinson's Disease: A Single-Center Experience.
    Zheng Z; Zhu Z; Ying Y; Jiang H; Wu H; Tian J; Luo W; Zhu J
    J Parkinsons Dis; 2022; 12(3):897-903. PubMed ID: 35124576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping.
    Dimov AV; Gupta A; Kopell BH; Wang Y
    J Neurosurg; 2018 Aug; 131(2):360-367. PubMed ID: 30095333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Relationship of Electrophysiologic Subthalamic Nucleus Length as a Predictor of Outcomes in Deep Brain Stimulation for Parkinson Disease.
    Shenai MB; Patel DM; Romeo A; Whisenhunt JD; Walker HC; Guthrie S; Guthrie BL
    Stereotact Funct Neurosurg; 2017; 95(5):341-347. PubMed ID: 28982098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does probe's eye subthalamic nucleus length on T2W MRI correspond with microelectrode recording in patients with deep brain stimulation for advanced Parkinson's disease?
    Kocabicak E; Aygun D; Ozaydin I; Jahanshahi A; Tan S; Onar M; Boke O; Kurt M; Guz H; Terzi M; Alptekin O; Temel Y
    Turk Neurosurg; 2013; 23(5):658-65. PubMed ID: 24101315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsolateral subthalamic neuronal activity enhanced by median nerve stimulation characterizes Parkinson's disease during deep brain stimulation with general anesthesia.
    Tsai ST; Chuang WY; Kuo CC; Chao PC; Chen TY; Hung HY; Chen SY
    J Neurosurg; 2015 Dec; 123(6):1394-400. PubMed ID: 26024004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical outcome of subthalamic stimulation in Parkinson's disease is improved by intraoperative multiple trajectories microelectrode recording.
    Reck C; Maarouf M; Wojtecki L; Groiss SJ; Florin E; Sturm V; Fink GR; Schnitzler A; Timmermann L
    J Neurol Surg A Cent Eur Neurosurg; 2012 Nov; 73(6):377-86. PubMed ID: 23042143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI.
    Duchin Y; Shamir RR; Patriat R; Kim J; Vitek JL; Sapiro G; Harel N
    PLoS One; 2018; 13(8):e0201469. PubMed ID: 30133472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T2-relaxometry predicts outcome of DBS in idiopathic Parkinson's disease.
    Lönnfors-Weitzel T; Weitzel T; Slotboom J; Kiefer C; Pollo C; Schüpbach M; Oertel M; Kaelin A; Wiest R
    Neuroimage Clin; 2016; 12():832-837. PubMed ID: 27843765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subthalamic nucleus stimulation in Parkinson's disease: postoperative CT-MRI fusion images confirm accuracy of electrode placement using intraoperative multi-unit recording.
    Shin M; Lefaucheur JP; Penholate MF; Brugières P; Gurruchaga JM; Nguyen JP
    Neurophysiol Clin; 2007 Dec; 37(6):457-66. PubMed ID: 18083502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of intraoperative microelectrode recording and stimulation in subthalamic lead placement for Parkinson's disease.
    Malinova V; Pinter A; Dragaescu C; Rohde V; Trenkwalder C; Sixel-Döring F; von Eckardstein KL
    PLoS One; 2020; 15(11):e0241752. PubMed ID: 33156830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.