These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 38385874)

  • 1. Chromosome structure modeling tools and their evaluation in bacteria.
    Liu T; Qiu QT; Hua KJ; Ma BG
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EVR: reconstruction of bacterial chromosome 3D structure models using error-vector resultant algorithm.
    Hua KJ; Ma BG
    BMC Genomics; 2019 Oct; 20(1):738. PubMed ID: 31615397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EVRC: reconstruction of chromosome 3D structure models using error-vector resultant algorithm with clustering coefficient.
    Wang X; Gu WC; Li J; Ma BG
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37847746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the 3D Genome Organization of Bacteria Using Hi-C.
    Crémazy FG; Rashid FM; Haycocks JR; Lamberte LE; Grainger DC; Dame RT
    Methods Mol Biol; 2018; 1837():3-18. PubMed ID: 30109602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome Conformation Capture with Deep Sequencing to Study the Roles of the Structural Maintenance of Chromosomes Complex In Vivo.
    Le TBK
    Methods Mol Biol; 2019; 2004():105-118. PubMed ID: 31147913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome conformation capture assays in bacteria.
    Umbarger MA
    Methods; 2012 Nov; 58(3):212-20. PubMed ID: 22776362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial proximity and gene function: a new dimension in prokaryotic gene association network analysis with 3D-GeneNet.
    Gao Y; Ma B; Xu Q; Peng Y; Gong H; Guan A; Hua K; Langford PR; Jin H; Luo R
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-C/3C-seq Data Analysis for Prokaryotic Genomes with HiC-Pro.
    Takemata N
    Methods Mol Biol; 2025; 2856():157-176. PubMed ID: 39283451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome Three-Dimensional Structure Reconstruction: An Iterative ShRec3D Algorithm.
    Li FZ; Zhang XF; Cai HY; Ran LQ; Zhou HY; Liu ZE
    J Comput Biol; 2023 May; 30(5):575-587. PubMed ID: 36847350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data.
    Zhu H; Wang Z
    Bioinformatics; 2019 Oct; 35(20):3981-3988. PubMed ID: 30865261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Analysis of Hi-C Data on Bacteria.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():19-31. PubMed ID: 30109603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for the 3D chromatin architecture of pro and eukaryotes.
    Heermann DW; Jerabek H; Liu L; Li Y
    Methods; 2012 Nov; 58(3):307-14. PubMed ID: 22677104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches.
    Hoareau M; Gerges E; Crémazy FGE
    Methods Mol Biol; 2024; 2819():3-26. PubMed ID: 39028499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating High-Resolution Hi-C Contact Maps of Bacteria.
    Thierry A; Cockram C
    Methods Mol Biol; 2022; 2301():183-195. PubMed ID: 34415536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.