BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38385878)

  • 1. Kled: an ultra-fast and sensitive structural variant detection tool for long-read sequencing data.
    Zhang Z; Jiang T; Li G; Cao S; Liu Y; Liu B; Wang Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data.
    Lesack KJ; Wasmuth JD
    PeerJ; 2024; 12():e17101. PubMed ID: 38500526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Variant Detection from Long-Read Sequencing Data with cuteSV.
    Jiang T; Liu S; Cao S; Wang Y
    Methods Mol Biol; 2022; 2493():137-151. PubMed ID: 35751813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of multiple algorithms to reliably detect structural variants in pears.
    Liu Y; Zhang M; Sun J; Chang W; Sun M; Zhang S; Wu J
    BMC Genomics; 2020 Jan; 21(1):61. PubMed ID: 31959124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-read-based human genomic structural variation detection with cuteSV.
    Jiang T; Liu Y; Jiang Y; Li J; Gao Y; Cui Z; Liu Y; Liu B; Wang Y
    Genome Biol; 2020 Aug; 21(1):189. PubMed ID: 32746918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Germline Structural Variant Calling Methods for Nanopore Sequencing Data.
    Bolognini D; Magi A
    Front Genet; 2021; 12():761791. PubMed ID: 34868242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graph clustering algorithm for detection and genotyping of structural variants from long reads.
    Gaitán N; Duitama J
    Gigascience; 2024 Jan; 13():. PubMed ID: 38206589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data.
    Gu W; Zhou A; Wang L; Sun S; Cui X; Zhu D
    J Comput Biol; 2021 Aug; 28(8):774-788. PubMed ID: 33973820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rMFilter: acceleration of long read-based structure variation calling by chimeric read filtering.
    Liu B; Jiang T; Yiu SM; Li J; Wang Y
    Bioinformatics; 2017 Sep; 33(17):2750-2752. PubMed ID: 28482046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of tandem and interspersed segmental duplications using high-throughput sequencing.
    Soylev A; Le TM; Amini H; Alkan C; Hormozdiari F
    Bioinformatics; 2019 Oct; 35(20):3923-3930. PubMed ID: 30937433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recurrence-based approach for validating structural variation using long-read sequencing technology.
    Zhao X; Weber AM; Mills RE
    Gigascience; 2017 Aug; 6(8):1-9. PubMed ID: 28873962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read sequencing settings for efficient structural variation detection based on comprehensive evaluation.
    Jiang T; Liu S; Cao S; Liu Y; Cui Z; Wang Y; Guo H
    BMC Bioinformatics; 2021 Nov; 22(1):552. PubMed ID: 34772337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parliament2: Accurate structural variant calling at scale.
    Zarate S; Carroll A; Mahmoud M; Krasheninina O; Jun G; Salerno WJ; Schatz MC; Boerwinkle E; Gibbs RA; Sedlazeck FJ
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33347570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers.
    Zhang YZ; Imoto S; Miyano S; Yamaguchi R
    PLoS Comput Biol; 2021 Oct; 17(10):e1009186. PubMed ID: 34634042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data.
    Mimori T; Nariai N; Kojima K; Takahashi M; Ono A; Sato Y; Yamaguchi-Kabata Y; Nagasaki M
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S8. PubMed ID: 24564972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duphold: scalable, depth-based annotation and curation of high-confidence structural variant calls.
    Pedersen BS; Quinlan AR
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 31222198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast read alignment with incorporation of known genomic variants.
    Guo H; Liu B; Guan D; Fu Y; Wang Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 6):265. PubMed ID: 31856811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PanSVR: Pan-Genome Augmented Short Read Realignment for Sensitive Detection of Structural Variations.
    Li G; Jiang T; Li J; Wang Y
    Front Genet; 2021; 12():731515. PubMed ID: 34490049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing.
    Kosugi S; Momozawa Y; Liu X; Terao C; Kubo M; Kamatani Y
    Genome Biol; 2019 Jun; 20(1):117. PubMed ID: 31159850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is an SV caller compatible with sequencing data? An online recommendation tool to automatically recommend the optimal caller based on data features.
    Wang S; Liu Y; Wang J; Zhu X; Shi Y; Wang X; Liu T; Xiao X; Wang J
    Front Genet; 2022; 13():1096797. PubMed ID: 36685885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.